Выбрать главу

Рис. 47. Кривая напряжение - деформация типичного неметаллического конструкционного материала (например, древесины или стекловолокна). Отклонение от закона Гука определяется, как правило, не формой кривой межатомных сил, а небольшими эффектами ползучести.

(обратно)

Торможение трещин дислокациями и коррозия под напряжением

Дислокационный механизм обеспечивает весьма удачную комбинацию упругости при малых деформациях с интенсивным течением - при больших. Типичная кривая напряжение - деформация для пластичного металла схематически показана на рис. 48. Упругая деформация в таких металлах составляет намного меньше 1%. Далее их поведение напоминает пластилин, они текут при почти постоянном напряжении до удлинений 50% и более (на самом деле локальные деформации бывают значительно большими). На этом участке пластического течения материал не разупрочняется. С увеличением деформации напряжение не возрастает; но, с другой стороны, металл серьезно и не повреждается. Средняя рабочая деформация, сознательно допускаемая в технических конструкциях, редко превышает примерно 0,1%, а поскольку металл может течь локально до 100% и более, то допустимы концентрации деформаций в кончике трещины что-нибудь около 1000.

Рис. 48. Кривая напряжение-деформация для пластичного металла

На рис. 49 видно, что по обе стороны от кончика трещины есть малые области очень большого сдвига - концентрация напряжений сдвига. Напряжения здесь достаточны, чтобы заработали источники дислокаций, и, действительно, новые дислокации рождаются здесь в изобилии. В двух главных плоскостях, торчащих из трещины, словно уши, под 45° к ее поверхности, возникает сдвиг, и самая опасная концентрация напряжений снимается. Грубо говоря, это равносильно округлению головки трещины. Следовательно, хотя гриффитсов баланс энергии (глава 4) остается в пользу распространения трещины, механизм, движущий ее, оказывается бессильным из-за отсутствия нужной концентрации напряжений.

Рис. 49. Концентрация касательных (сдвиговых) напряжений у кончика трещины.

Таким образом, трещине не удается подрастать по чисто механическим причинам, и материал будет в безопасности, пожалуй, практически в 99% случаев. Работая с материалами, мы должны всегда помнить, что не существует четких и ясных линий раздела между химией, физикой и теорией упругости. Эксперты в своих замках из слоновой кости любят проводить это разделение, но ведь межатомные- то связи о них ничего не ведают. Связь может быть разрушена химическим, физическим или механическим путем, а также любой комбинацией этих способов. Упруго натянутая связь более уязвима по отношению к физическим и химическим воздействиям. По этой причине области с высоким напряжением особенно слабо сопротивляются растворителям и коррозионным средам.

Мы уже подчеркивали, что в вязких материалах баланс энергии обычно остается в пользу распространения трещины. Трещина стоит на месте лишь потому, что из-за снижения концентрации напряжений отсутствует и механизм распространения. В то же время, хотя рождение многочисленных дислокаций сильно понизило напряжения у головки трещины, оно не сбросило их полностью.

Более того, сильно исковеркан и жизненный путь находящихся здесь атомов, и сохранились деформации микрообъемов. Поэтому связи между атомами в этой области более чем где-либо чувствительны к воздействию агрессивных растворов и хнмикалиев, которым случится соприкоснуться с материалом. Вот почему металлы, вязкие на воздухе и в других сухих газах, могут растрескаться под нагрузкой, если их замочить в морской воде. То же самое случается и на химических заводах. Причем без нагрузки металлы могут служить годами в той же самой коррозионной среде, а время действия роковой нагрузки может быть и очень большим, и очень малым. В этом отношении некоторые латуни могут оказаться ловушками для несведущих любителей.

(обратно)

Пластичность кристаллов

Пластичность металлов имеет два чрезвычайно полезных следствия. Во-первых, она затрудняет распространение трещин, а во-вторых, делает металл ковким. Последнее означает, что куску металла можно придать нужную форму путем горячих или холодных операций ковки, прессования, гибки. Вообще говоря, для обработки металлов давлением (ковки, прокатки) способность к течению должна быть больше, чем для того, чтобы обеспечить сопротивление материала развитию трещин. Но обработке подвергается, как правило, нагретый металл, а в таком состоянии практически все кристаллы намного более пластичны.