Рис. 2. Сравнение напряжений, установленных экспериментально с помощью дифракции рентгеновских лучей (методом двух экспозиций), с расчетными напряжениями, вычисленными по кривизне изогнутой балки (отожженная малоуглеродистая сталь). Белый кружок - данные экспериментатора A, черный - экспериментаторов B и C.
(обратно)Напряжения и деформации, что это?
Все эти рассуждения подводят нас к понятиям "напряжение" и "деформация". Когда мы говорили о силах, то имели в виду полные величины сил, действующих на тело. Такой силой мог быть любой груз. Когда мы говорили о смещении под нагрузкой, то имели в виду полные смещения независимо от размеров объекта, будь он большим или малым. Однако все это не позволяет нам сравнивать большой объект под большой нагрузкой с малым объектом под меньшей нагрузкой. Например, если из стали одного сорта изготовить крошечную деталь пишущей машинки и корпус воздушного лайнера, то какие характеристики этого материала, работающего в столь различных условиях, можно было бы сравнивать? Без ответа на этот вопрос мы не можем продолжать разговор о материалах и конструкциях. Нужные нам величины называются напряжением и деформацией. Напряжение - это нагрузка, отнесенная к единице площади, то есть σ= P/F, где σ - напряжение, Р - нагрузка, F - площадь. Приведенная формула также повседневна, как и привычные всем выражения "килограмм масла стоит 3 рубля" или "машина проходит 10 километров на одном литре бензина". Следовательно, если мы снова возьмем кирпич с поперечным сечением 25x12 см, то есть площадью сечения 300 см2, и я наступлю на него, приложив к нему силу своего веса 75 кг, то сжимающее напряжение, которое я вызову в кирпиче, будет σ = P/F = 75/300 = 0,25 кг/см2
Точно так же, если кирпичная опора моста имеет поперечное сечение 10x5 м и на мост въезжает локомотив весом в 125 т, то сжимающее напряжение в кирпичной кладке будет около 0,25 кг/см2. Теперь мы с полной определенностью можем сказать, что в обоих случаях напряжения в кирпиче примерно одинаковы, и если одна конструкция не разрушается, то, по-видимому, не разрушится и другая. Что касается кирпичей, то их молекулы поджимаются одна к другой одинаковыми силами, хотя вес локомотива и вес моего тела совершенно различны. Очевидно, что инженера должны интересовать именно такие величины.
Напряжение может быть выражено в килограммах на квадратный миллиметр (кг/мм2), килограммах на квадратный сантиметр (кг/см2), ньютонах на квадратный метр (Н/м2) или других подобных единицах[8].
Разумеется, эти единицы применяются к любым поперечным сечениям и к любой точке, а не только к квадратным миллиметрам, квадратным сантиметрам и т.п. То, что цена одного килограмма масла 3 рубля, вовсе не означает, что ее используют лишь для веса в один килограмм. Деформация - это величина удлинения стержня под нагрузкой, отнесенная к начальной длине. Очевидно, что отрезки различной длины при одной и той же нагрузке получают в конструкциях различное удлинение. Если обозначить деформацию через ε, то ε = Δl / l
где Δl — полное удлинение, а l — начальная длина. Так что, если стержень длиною 100 см под нагрузкой удлиняется на 1 см, его деформация будет 1/100, или 1%. Такая же деформация будет у стержня длиной 50 см, растянутого на 1/2 см, и т.д. При этом толщина стержня роли не играет, не важно также, что вызвало удлинение.
В данном случае нас интересует лишь то, насколько изменилось взаимное положение атомов и молекул. Деформация, так же как и напряжение, не зависит от размера образца. Деформация есть отношение удлинения к начальной длине, и, следовательно, она безразмерна и не зависит от того, какой системой единиц мы пользуемся.
(обратно)Закон Гука
Роберт Гук был первым, кого осенила догадка о том, что происходит при нагружении твердого тела. Он был не только физиком, но и известным архитектором и инженером. Ему нередко случалось беседовать со знаменитым часовых дел мастером Томасом Томпионом (1639–1719). Они толковали о поведении пружин и маятников. Ничего не зная, конечно, о химических и электрических межатомных связях, Гук понял, что часовая пружина - всего лишь частный случай поведения любого твердого тела, что в природе нет абсолютно жестких тел, а упругость является свойством всякой конструкции, всякого твердого тела.