Выбрать главу

В главе 3 подчеркивалось, что задача теории прочности не столько в том, чтобы объяснить, почему материалы прочны, сколько в выяснении причин их разрушения. Все тела прочны “от природы”, если они не ослаблены дефектами; но дело в том, что дефекты почти всегда присущи твердым телам. Напомним, что в случае хрупких тел, в которых дислокации неподвижны, ослабляющими дефектами являются небольшие геометрические искажения, на которых возникает концентрация напряжений. В тех случаях, когда внутри кристалла все обстоит более или менее благополучно, опасность могут представлять поверхностные дефекты. Большинство ковалентных керамических материалов, приведенных в табл. 3, существует в виде порошка или неправильной формы кусков. Дело теперь за тем, чтобы получить эти вещества в форме нитей, однородных внутри и гладких снаружи.

Как раз над этим и работают последнее время многие лаборатории в разных странах, теперь мы знаем довольно много путей, которые ведут к получению прочных жестких волокон, но ни один из них не легок и не очень дешев. Достаточно упомянуть, что для получения таких волокон требуется температура в пределах от 1400 до 3500° C. Сейчас волокна обычно обрабатываются при высокой температуре в течение часов и даже дней. Сделать печь, которая работала бы при этих температурах в коррозионных условиях и позволяла бы поддерживать приемлемую химическую чистоту в реакционной камере,- очень серьезная техническая задача.

Такие “сверхволокна” обычно делятся на два больших класса - непрерывные волокна и усы. Непрерывные волокна имеют, конечно, большую длину; часто их можно наматывать на бобину, как нейлон или стекловолокно. Они могут иметь любую толщину, но чаще всего она лежит в пределах от 5 до 100 мкм. Обращаться с ними можно, как со стекловолокном, но более толстые волокна жестче на изгиб, и работать с ними, понятно, труднее. Толщина усов обычно 1 мкм, а длина порядка миллиметра, хотя некоторые усы вырастают длиною до нескольких сантиметров.

Модули упругости большинства этих волокон лежат где-то в области между 3,5 x 104 и 7,0 x 104 кГ/мм2, а поскольку их плотность колеблется примерно от 2 до 4, то удельные модули вполне оправдывают ожидания в десять раз превышая соответствующие константы обычных технических материалов. Прочность всех непрерывных волокон довольно высока, но в настоящее время ее нельзя назвать исключительно высокой. Обычно она лежит между 175 и 350 кГ/мм2 - эти величины близки к прочности обычных стекловолокон и отражают чрезвычайные трудности изготовления длинных волокон, свободных от микродефектов. Усы часто намного прочнее, их средняя прочность может достигать 700-1000 кГ/мм2, то есть они могут быть раза в три прочнее большинства непрерывных волокон.

Сравнивать преимущества и недостатки обоих типов волокон довольно трудно. К тому же эти сравнения могут быстро устареть. В некоторых случаях требуется очень тщательно уложить армирующие волокна в одном направлении, иногда этого добиваются путем намотки непрерывных волокон и пропитки их связующей смолой, то есть делают своего рода кокон. Часто так делают сосуды давления и трубы. Это, казалось бы, преимущество непрерывных волокон, но вот недавно был разработан способ, по которому короткие волокна (например, усы) сортируются, разбраковываются, а затем во влажном состоянии перерабатываются в непрерывную пряжу, вроде хлопчатобумажной, с которой потом можно обращаться так же, как с непрерывными волокнами. В ряде случаев из усов получают суспензию в какой-нибудь жидкости, которую можно легко формовать, как бумажную массу.

Выбор волокон зависит в некоторой степени от типа матрицы, которую решено использовать. Пластики и смолы имеют малый удельный вес и с ними легко работать, их нетрудно формовать, они вообще обладают многими преимуществами. С другой стороны, их прочность и модуль упругости малы, поэтому они не очень хорошо передают нагрузку от одного волокна к другому, то есть их нельзя пожалуй, считать хорошими связующими материалами. По этой причине в тех случаях, когда в качестве матрицы используется смола, применяются длинные непрерывные волокна. Смола позволяет очень эффективно использовать свойства непрерывных волокон и не годится в качестве матрицы для коротких волокон - например, усов.