Однако основные работы по этой проблеме базировались на ином подходе, чем в трудах по ковариантности, поскольку участники должны были задавать вопросы экспериментатору, чтобы потом объяснить конкретное событие[73]. В литературе по психологии этот подход именуется причинным осмыслением. В отличие от экспериментов, с которыми мы уже ознакомились, его задача – выяснить, почему футболист смог забить конкретный гол, а не почему игроки вообще забивают голы. Взяв за основу пример с дорожно-транспортным происшествием, ученые обнаружили, что вопросы сосредоточивались на механизмах, вероятно, сыгравших роль в этом ДТП (например «не был ли водитель пьян»), вместо тенденций и предрасположенностей (например «много ли автокатастроф случается на этой дороге»)[74]. Участники эксперимента должны были задавать вопросы, чтобы получить нужные сведения; в другом случае им заранее предоставлялась как механистическая, так и ковариантная информация, но первая по-прежнему имела больше силы в атрибуции причинности.
И все же мы объединяем то, что наблюдаем, с тем, что уже знаем – а мы, разумеется, обладаем знаниями как о корреляциях (соотношениях, взаимосвязи), так и о механизмах. Маловероятно, что мы будем полагаться только на один вид доказательств. В самом деле, другие работы решали эту проблему: как сегменты информации сочетаются между собой, а не сочетаются ли вообще. К примеру, ряд экспериментов показал: на интерпретацию сильных корреляций влияла убежденность в существовании достоверного механизма, связывающего причину и следствие, однако этого не наблюдалось при слабых корреляциях[75]. Действительно, оценивая последовательности наблюдений, люди обычно принимают во внимание известные взаимосвязи, а также вероятность их наличия (например, редкие или обычные объяснения симптомов).
Но, как и всегда в психологии, существует несогласие по поводу того, как люди узнают о наборах взаимосвязей (далее я буду называть их моделями, или каузальными структурами). Согласно одной точке зрения, сначала мы получаем данные, а затем выбираем структуру, которая с наибольшей вероятностью основана на этих данных или лучше всего совпадает с нашими наблюдениями[76]. Иными словами, зная, что ваш пес лает при громких звуках и что дверь, хлопая, также издает громкий звук, вы сужаете возможные взаимосвязи между вещами и, вероятно, способны отфильтровать модели, при которых пес издает различные шумы[77]. С другой точки зрения, нами в основном движут гипотезы, а значит, мы сначала предлагаем возможный вариант структуры, а затем изменяем его по мере поступления информации[78].
Хотя простейший сценарий большинства подобных экспериментов предполагает наличие контролирующего субъекта, который изолирует влияние различных свойств, в реальности мы редко сами решаем, в какой степени одна вещь (заранее идентифицированная как потенциальная причина) влияет на другую (заранее идентифицированную как потенциальное следствие). Если у вас внезапно разболелась голова, приходится анализировать все факторы, спровоцировавшие боль. Точно так же выявление аллергической реакции на лекарство означает дедуктивный анализ множества случаев его приема, после которого проявляется общий симптом.
Задача причинных умозаключений часто делится на две: поиск структуры и поиск относительной силы. Структура говорит о том, что именно и какой эффект вызывает, а сила – в какой степени (например, как часто лекарство ведет к побочному эффекту или насколько повышается цена на акции после отчета о прибылях).
Эти процессы не изолированы, поскольку сильную причину определить легче, чем слабую. Множество психологических экспериментов имеют целью оценить силу, то есть определить ковариантность вместо механизмов.
Скажем, вы замечаете, что при беге начинаете чихать. Не имея возможности изменить условия занятий (в зале или на открытом воздухе, весной или зимой и т. д.), вы не сможете утверждать, что чихание связано с сезонной аллергией, а не с физическими упражнениями. В простых экспериментах дети делали заключение о корректных структурах только на основе наблюдения последовательности событий, однако данные, полученные исключительно путем наблюдений, часто ведут к неверным выводам. Мы можем ошибочно подумать, что два следствия вызывают друг друга – просто потому, что имеют общую причину и часто отмечаются вместе.
76
Griffiths et al. (2011). Подробнее об интеграции механистической и ковариантной информации см. Perales et al. (2010).