Выбрать главу

При образовании нового вида начинается усиленный мутагенез и склеивание РНК сдвигает процесс в сторону новых соотношений. Выбираются те, которые не дают побочных эффектов при проверке генотипа в эмбриогенезе. Скачкообразность видообразования связана с быстрым сдвигом в сторону ситуации, когда нет двойных РНК и гены располагаются в соответствующих местах хромосом, а лишние гены становятся псевдогенами. Поэтому любая мутация вредна. Полезных для вида мутаций нет. Есть полезные мутации для вновь образующегося вида.

9.18. РОЛЬ ПОЛИПЛОИДИЗАЦИИ

Одним из способов видообразования на основе полиплоидии является так называемое "мгновенное" видообразование. Оно возможно на самом деле при быстром изменении кариотипа путём полиплоидизации. Да! Число хромосом — это важнейший ограничитель видов. Однако хромосомные проблемы преодолеваются, если нескрещиваемость близких видов обойти путем увеличения кратности набора хромосом, увеличением плоидности. Например, если сделать тетраплоидность, то можно скрещивать виды (как они будут развиваться и как будут обойдены проблемы, связанные с неправильным положением белков в хромосомах я расскажу чуть позднее).

Известны группы близких видов, обычно растений, с кратным числом хромосом. Существующие в природе естественные ряды гибридных видов растений возникли, вероятно, именно таким путем. Так, известны виды пшеницы с 14, 28 и 42 хромосомами, виды роз с 14, 28, 42 и 56 хромосомами и виды фиалок с числом хромосом, кратным 6 в интервале от 12 до 54. Например, 28 хромосомная пшеница (Triticum durum) или 42 хромосомная пшеница (Triticum vulgare). По некоторым данным, гибридогенное происхождение имеют не менее трети всех видов цветковых растений. Но то же самое найдено у мышей полевок. Полиплоидизационный механизм доказан и для некоторых видов животных, в частности, скальных ящериц, земноводных и рыб.

Как совершается скачок в числе хромосом, ведущий к образованию нового вида? Как это происходит и почему, сказать сейчас трудно. Но, видимо, новое деление числа хромосом оказывается более выгодным для нового набора белков, которые в сущности одни и те же, но их нефункциональные части как бы взаимодействуют хуже, чем раньше. Новый набор хромосом делает такое взаимодействие более удобным что ли.

Удвоение генов позволяет обходить проблему видового ограничения. Особенностью видообразования через полиплоидизацию является то, что он приводит к возникновению новых видов, всегда морфологически близких к исходному виду. Как я уже отмечал выше, при скрещивании различных видов потомство обычно бывает стерильным. Это связано с тем, что число хромосом у разных видов различно. Несходные хромосомы не могут нормально сходиться в пары в процессе мейоза, и образующиеся половые клетки не получают нормального набора хромосом. Однако, если у такого гибрида происходит геномная мутация, вызывающая удвоение числа хромосом, то мейоз может протекать нормально и дать нормальные половые клетки. Однако не у всех потомков, а только у ограниченного их числа.

После полиплоидизации получение жизнеспособного организма возможно только в том случае, если удается найти такую комбинацию разделения и спаривания хромосом, при которой аллели генов становятся комплементарны, то есть занимают симметричные позиции в новых парах хромосом. Условием выживания после полиплоидизации является такое новое разделение парных генов, когда они оказываются в каждой новой паре хромосом и желательно в такой позиции, которая не будет вести при кроссинговере хромосом к потере гена в одной из хромосом. Тогда может образоваться новый вид. При этом новый вид приобретает способность к размножению и утрачивает возможность скрещивания с родительскими формами.

Если изменить число хромосом, то соответствующие гены-аллели не будут расходиться в новые дочерние клетки. Из-за того, что они могут располагаться не комплементарно. Например, пусть гены "А" и "а" располагаются в хромосоме 2. После изменение числа хромосом они могут оказаться в разных хромосомах. А в хромосоме 1, а "а" в хромосоме 2. Тогда возникает ситуация, что только 25 % полученных от слияния гамет зигот будут жизнеспособны. И вот тут, видимо, включается процесс использования мобильных генетических элементов.

Это может продолжаться до тех пор, пока все гены не встанут на правильные места в соответствующих хромосомах. А до этого момента многие виды переключаются на бесполовое развитие — партеногенез. Если правильное распределение генов между новыми парами хромосом не удается получить сразу, то новый вид некоторые время может размножаться партеногенетически, то есть без участия полового процесса. Например, некоторые виды кавказских ящериц, имеющих гибридогенное происхождение, триплоидны и размножаются с помощью партеногенеза.