Выбрать главу

где % — длина волны спектральной линии, в ангстремах, k = 3, 4, 5, 6 — целые числа, а постоянная Ь = 3645,6 А.

Это простое соотношение заслуживает пристального внимания. Дело в том, что оно точное, в чем каждый желающий может легко убедиться сам. Взгляните на таблицу, которую Бальмер составил в 1885 г.:

Линия 1, А (измерено Ангстремом) 1, А (вычислено Бальмером) k
С 6562,10 6562,08 3
F 4860,74 4860,8 4
G 4340,1 4340,0 5
Н 4101,2 4101,3 6

В первом столбце приведены названия спектральных линий, данные им Фраунгофером, во втором — длины волн этих линий, которые незадолго перед этим тщательно измерил шведский физик Ионас Андерс Ангстрем (1814—1874). (Единица длины ангстрем названа в его честь.) В третьем столбце представлены длины волн, вычисленные по формуле Бальмера при целых числах k, приведенных в четвертом столбце. Совпадение измеренных и вычисленных значений X поразительное. Такие совпадения не могут быть случайными, и потому открытие Бальмера не затерялось в архивах, а привело к целой серии новых исследований.

Иногда Бальмера изображают чудаковатым школьным учителем, который от нечего делать делил и умножал различные числа, пока случайно не набрел на простые связи между ними. Это неверно. Он был глубоко образованным человеком, писал статьи по разным вопросам проективной геометрии и постоянно возвращался к самым сложным проблемам теории познания. Например, в 1868 г. он опубликовал работу, в которой пытался выяснить соотношение между научными исследованиями и системами мировой философии. Сам он с юношеских лет находился под влиянием пифагорейцев с их учением о гармонии и мистической роли целых чисел в природе. Как и древние, Бальмер был убежден, что тайну единства всех наблюдаемых явлений следует искать в различных комбинациях целых чисел. Поэтому, когда его внимание привлек набор четко ограниченных спектральных линий, он подошел к этому явлению природы с уже готовой меркой. Его ожидания оправдались: оказалось, что длины волн спектральных линий связаны между собой простыми рациональными соотношениями.

С открытия Бальмера начинается целая эпоха в науке об атоме. По существу, вся теория атома начинается с его формулы. Тогда этого еще не знали, но, вероятно, почувствовали. Уже в 1886 г. Рунге заметил, что формула Бальмера становится прозрачнее, если ее записать не для длины волны X, а для частоты у —с/к (здесь с — 3-10 см/с — скорость света в вакууме):

А в 1890 г. шведский физик Иоганн Роберт Ридберг (1854— 1919) предложил записывать формулу в том виде, который она сохранила до сих пор:

Здесь п и k — целые числа, а постоянная R— 109 677,58 см-1 называется с тех пор постоянной Ридберга для атома водорода. Полагая в этой формуле п = 2, можно вычислить всю серию Бальмера, измеренную впоследствии вплоть до k «50.

Тогда же возникла мысль записывать частоту в виде разности двух величин — термов Тп и Tk\

Пока что в такой записи не видно глубокого смысла, да и особых преимуществ тоже. Однако в 1908 г. молодой, рано умерший швейцарский ученый Вальтер Ритц (1878—1909) объяснил преимущества такой формы записи. Продолжая работы Ридберга, он сформулировал так называемый комбинационный принцип: частоту произвольной линии в спектре