Очень важно отдавать себе отчет в том, что, конечно, любое излучение — это не синусоида, изображенная на рисунке, а физический процесс, основные характеристики которого (например, периодичность), по счастью, можно выразить на языке таких простых моделей. У каждого вида излучения свои особенности. Сосредоточимся пока на том его виде, который для нас наиболее важен и привычен,— на солнечном излучении.
Когда вы греетесь на солнце, вы, наверное, не задумываетесь о сложном составе солнечного излучения, хотя иногда солнечные ожоги и напоминают вам об этом. Исаак Ньютон (1643—1727) жил в Англии, где солнце светит не так уж ярко, тем не менее он захотел узнать, из чего состоит солнечный свет. Чтобы выяснить это, Ньютон поставил в 1666 г. опыт, знакомый теперь каждому школьнику: пропуская луч солнца сквозь призму, он обнаружил позади нее на стене радугу — спектр солнечного света. Впоследствии его соотечественник Томас Юнг (1773—1829) выяснил, что каждому цвету радуги-спектра соответствует своя длина волны солнечного излучения: самые длинные волны у красного цвета — 650 нм; у зеленого короче — 520 нм; еще короче у фиолетового— 400 нм (1 нм = 10-7 см).
Спектр излучения любого тела — будь то Солнце или раскаленный железный лом — полностью известен, если мы, во-первых, знаем, из каких волн он состоит и, во-вторых, какую долю они составляют в общем потоке излучения. В частности, цвет раскаленного тела определяют те волны, которых больше всего в спектре его излучения. При изменении температуры тела спектральный состав его излучения также меняется. Пока температура тела невысока, оно излучает, но не светится, то есть испускает только тепловые волны, невидимые для глаза. При повышении температуры оно начинает светиться: сначала красным, затем оранжевым, желтым и т. д. цветом. Например, при температуре 6000 °C больше всего’ излучается желтых лучей (именно по этому признаку определили температуру поверхности Солнца).
В конце прошлого века законы теплового излучения тел стали предметом пристального внимания ученых. В значительной мере это было обусловлено потребностями металлургии и, в частности, изобретением в 1856 г. Генрихом Бессемером (1813—1898) нового способа производства стали, получившего впоследствии название бессемеровского.
Спектральный состав излучения принято описывать с помощью спектральной функции и (у, Т), которая показывает, чему равна доля излучения с частотой v в его общем потоке при заданной температуре тела Т. Типичная спектральная функция и (v, Т) изображена на рисунке: примерно так выглядит спектральный состав излучения Солнца.
При попытке более детально изучить законы' теплового излучения вначале нужно было принять во внимание тот факт, что даже при одной и той же температуре спектр излучения и, следовательно, спектральная функция и(у,Т) зависят от вещества нагретого тела. В этом нетрудно убедиться, нагревая в темноте два одинаковых по размеру шара — каменный и стальной: первый из них будет светиться намного ярче. Вскоре выясни
ли, однако, что если вместо сплошных шаров нагревать полые, а их излучение наблюдать через небольшое отверстие в стенке шара, то спектральный состав этого излучения уже не будет зависеть от вещества шара. Такой спектр назвали спектром абсолютно черного тела. Происхождение этого несколько необычного названия легко по-
нять. Представьте, что вы не нагреваете шар, а, наоборот, освещаете его снаружи. В этом случае вы всегда увидите перед собой одинаково черное отверстие — независимо от вещества шара, поскольку почти все лучи, попавшие внутрь полости, многократно в ней отражаются и наружу практически не выходят.
Универсальная спектральная функция и(у,Т), описывающая спектр излучения абсолютно черного тела, была введена в научный обиход выдающимся немецким физиком Густавом Робертом Кирхгофом (1824—1887) в 1859 г. Измерить ее оказалось не так просто: это удалось лишь Сэмюэлю Лэнглею (1834—1906), который в 1884 г. изобрел болометр — прибор для измерения энергии излучения. Важность функции u(v,T) поняли сразу же, но в течение 40 лет не удавалось найти для нее теоретическую формулу, которая бы правильно воспроизводила результаты измерений. Однако попытки эти никогда не прекращались: по-видимому, поиски абсолютного всегда привлекательны для человеческого ума.
КВАНТЫ