Всегда, когда мы, прикладывая усилия, производим какое-то перемещение, мы совершаем работу против тех или иных сил. Скажем, растягивая или закручивая стальной стержень, мы совершаем работу против упругих сил. Накачивая воздух в автомобильную камеру — против сил давления. Вталкивая электрически заряженное тело в электростатическое поле — против сил этого поля и т. д. Чтобы вычислить произведенную в каждом из этих случаев работу, нужно умножить обобщенную силу (силу, крутящий момент, давление) на разность соответствующих обобщенных координат (путь, угол поворота, изменение объема).
Наличие обобщенной силы — необходимое, но не достаточное условие для совершения работы. Вы можете с какой угодно силой давить на стержень, но если он не начал деформироваться, никакой работы не совершается. Поток пара, протекающий с огромной скоростью через турбину с заклиненным ротором, может создавать на валу огромный крутящий момент, но пока ротор не начал вращаться, турбина не совершает никакой работы. Давление в цилиндре двигателя может быть сколь угодно велико, но пока не начал изменяться рабочий объем, то есть пока не начал двигаться поршень, газ не совершает работы. Таким образом, чтобы система могла совершать работу, требуется наличие двух сомножителей: обобщенной силы и разности обобщенных координат.
И вот что важно: какие бы формы движения мы ни рассматривали — механические, электрические, магнитные, все они совершают, если так можно выразиться, одну и ту же — качественно — работу — механическую. Поэтому и совершение этой работы всегда связано с изменением объема или пространственного расположения частей системы. Если абсолютно жестко зафиксировать внешние координаты любой системы, она в принципе не сможет обмениваться работой с окружающей средой. Но такая фиксация не помешает системе взаимодействовать со средой принципиально иным способом — термическим. Как бы жестко ни были зафиксированы все внешние обобщенные координаты системы, это не сможет помешать ей получать или отдавать теплоту. Нужно только, чтобы между системой и окружающей средой существовала разность температур. И как для вычисления механической работы мы должны были обобщенную силу умножать на разность обобщенных координат, так и для вычисления термической работы — теплоты — мы должны термическую силу умножить на разность «термических» координат. Нетрудно сообразить, что термическая сила — это температура. А вот с термической координатой дело обстояло сложнее. Ее ввел в научный обиход Р. Клаузиус, который дал ей название энтропия.
Вот какой сюрприз преподнесло ученым тепловое движение! Почти сто лет они исследовали его, устанавливали законы, производили эксперименты, не подозревая о существовании такой важной величины. Поставьте-ка себя в положение людей, изучающих законы движения и не имеющих понятия о пространственных координатах! Правда, надо прямо сказать: энтропия относится к числу весьма загадочных величин главным образом потому, что она не поддается непосредственному измерению и может быть вычислена лишь косвенным путем. Но физический смысл этой величины прост: она — неотъемлемое свойство именно теплового движения. Если повышение температуры не всегда свидетельствует о подводе к телу теплоты, то увеличить энтропию тела невозможно никаким иным путем, кроме подвода теплоты — либо от другого тела, либо за счет внутренних необратимых процессов.
Эта важная физическая величина сразу же внесла стройность и ясность в понимание многих процессов. Так, в доте-плородный период большинство ученых отождествляло теплоту и температуру, считало, что это одно и то же. Теория теплорода провела между ними различие — и это ее огромная заслуга. Однако температура продолжала считаться главнейшим атрибутом теплового движения: ее повышение рассматривалось как важнейший признак подвода теплоты к телу. После введения понятия энтропии такое заблуждение стало невозможным. Как совершение механической работы нельзя себе представить без изменения обобщенных координат, так и обмен теплотой не может происходить без изменения энтропии. Поэтому о подводе или отводе теплоты следует судить не по изменению температуры тела, но по изменению его энтропии. Если энтропия увеличивается — это всегда означает, что к телу подводится теплота, если уменьшается — теплота отводится. Механическое сжатие и расширение, электризация, намагничивание, упругая деформация, то есть любое нетермическое воздействие, не влияют на изменение энтропии.