Выбрать главу

ЦИКЛ ЭРИКСОНА (6-1-2'-3'-5'): 1–2' — изобарное нагревание, 2'-3' — изотермическое расширение, 3'-4 — изобарное охлаждение, 4–1 — изотермическое сжатие. Площадь 6-1-2'-3'-5' — подведенная теплота, площадь 6-1-4-3'-5' — отведенная теплота. Площадь 1–2'-3'-4 — полезная механическая работа. КПД = пл.1–2'-3'-4/пл.6-1-2'-3'-5'.

В — идеальные циклы Отто и Брайтона.

ЦИКЛ ОТТО (6-2-3-5): 1–2 — адиабатическое сжатие, 2–3 — изохорный нагрев, 3–4 — адиабатическое расширение, 4–1 — изохорное охлаждение. Площадь 6-2-3-5 — подведенная теплота, площадь 6-1-4-5 — отведенная теплота. Площадь 1-2-3-4 — полезная механическая работа. КПД = пл.1-2-3-4/пл.6-2-3-5.

ЦИКЛ БРАЙТОНА (6-2-3'-5'): 1–2 — адиабатическое сжатие, 2–3' — изобарный нагрев, 3'-4' — адиабатическое расширение, 4'-1 — изобарное охлаждение. Площадь 6-2-3'-5' — подведенная теплота, площадь 6-1-4'-5' — отведенная теплота. Площадь 1-2-3'-4' — полезная механическая работа. КПД = пл.1-2-3'-4'/пл.6–2—3'—5'.

Карно считал, как уже говорилось раньше: «в телах, употребляемых для развития движущей силы тепла, не должно быть ни одного изменения температуры, происходящего не от изменения объема». Это значит, что в цикле не должно быть ни одного процесса, в котором рабочее тело изменяло бы свою температуру за счет подвода или отвода теплоты.

Изменять температуру можно лишь за счет адиабатических, чисто механических процессов. А подвод или отвод тепла в изотермических процессах не сопровождается изменением температуры. Вот почему цикл, составленный из двух адиабатических и двух изотермических процессов, будет самым эффективным из всех, могущих быть встроенными между изотермическим нагревателем и холодильником.

Чтобы сравнить двигатели, работающие по разным циклам, их экономичность оценивается с помощью числового коэффициента — коэффициента полезного действия, который для тепловых двигателей представляет собой отношение работы, полученной на выходе, к теплоте, подведенной на входе. Этот коэффициент — КПД — для идеального цикла Карно выражается очень простой формулой: КПД = Т1 - Т21.

Здесь Т1 — абсолютная температура нагревателя, а Т2 — абсолютная температура холодильника. (Абсолютная температура получается прибавлением 273,16° к температуре по шкале Цельсия.)

Из этой формулы видно: для повышения КПД надо и увеличивать температуру нагревателя, и уменьшать температуру холодильника. Но температура холодильника — это температура окружающего воздуха на Земле, которая выше абсолютного нуля примерно на 300°. Поэтому сколь бы высоко мы ни поднимали температуру Т1, нам все равно не получить КПД даже идеального теплового двигателя, равным точно 100 %. И еще один неожиданный вывод вытекает из формулы: экономичность теплового двигателя не зависит от свойств рабочего тела.

Трактат Карно оказал огромное влияние на развитие тепловых двигателей. Он внес ясность в запутанный и сложный вопрос, показал, чего можно и чего нельзя ожидать от тепловых машин. Во времена, когда паровой двигатель господствовал в промышленности, когда все попытки изобретателей заменить пар воздухом терпели провал за провалом, Карно прозорливо указывал: «…употребление атмосферного воздуха для развития движущей силы тепла на практике представит огромные трудности, но, может быть, не непреодолимые; если их удастся победить, то воздух обнаружит большие преимущества перед водяным паром». Наконец, Карно объяснил, почему выгодно с точки зрения экономичности повышать температуру, а следовательно, и давление пара. И именно он указал на заблуждения многих практиков, пытавшихся добиться улучшения экономичности за счет замены воды ртутью, алкоголем, серой… «Движущая сила тепла не зависит от агентов, взятых для ее развития».

Для науки это утверждение сыграло даже большую роль, чем для техники. Раз КПД цикла Карно не зависит от природы рабочего тела, мы можем применять в этом качестве мыльную пленку, стальную пластину, лед, наэлектризованный кристалл и т. д. Мысленно заставляя эти тела совершать цикл Карно, мы легко и быстро можем определить зависимость поверхностного натяжения от температуры, зависимость точки плавления льда от давления, модуля упругости от температуры и т. д. Вот как получилось, что чисто технический, казалось бы, вывод стал основой для одного из самых мощных и общих методов термодинамического анализа.

К сожалению, простота формулы Карно породила потом немало недоразумений. Последователи Карно не всегда ясно проводили различие между идеальными и реальными циклами. Порой встречалось даже такое утверждение, будто только цикл Карно может быть идеальным, а все остальные — реальные. Это неверно: все циклы могут быть как идеальными, так и реальными. Единственное различие между ними в том, что в идеальных циклах нет потерь от трения и необратимого теплообмена при конечной разности температур. Поэтому циклы Дизеля, Отто, Стирлинга, Эриксона могут быть идеальными, так же как и цикл Карно. Но для того чтобы был возможен идеальный цикл, к примеру Отто, необходимо, чтобы температуры нагревателя и холодильника были не постоянными, как для цикла Карно, а менялись точно так же, как меняется температура рабочего тела в процессе изохорного нагрева и охлаждения. Для источников с такими характеристиками цикл Отто будет единственно возможным идеальным двигателем. Для таких источников цикл Карно просто утрачивает смысл, становится невозможным, как невозможны идеальные циклы Отто и Дизеля для источников и приемников с постоянной температурой.