Выбрать главу

Трудно сказать, кто впервые ввел в обиход понятие КПД — коэффициент полезного действия. Но как бы там ни было, эта величина оказалась поначалу на редкость удобной и простой для оценки совершенства различных механизмов. А какими механизмами раньше всего начали пользоваться в технике? Простейшими — рычагами, клиньями, винтовыми и зубчатыми передачами, блоками и т. д. Все это — преобразователи механической мощности, позволяющие увеличивать силу или момент за счет соответствующего уменьшения скорости или угловой скорости. При всех таких изменениях произведение силы на скорость или момента на угловую скорость остается постоянным. Но это только в идеальном случае, когда нет трения. Когда трение есть, часть мощности превращается в теплоту, и на выходе мощность оказывается меньше, чем на входе. Отношение мощностей на выходе и на входе и есть коэффициент полезного действия — КПД. Ясно, что чем ближе эта величина к единице, тем совершеннее механизм. В идеальном случае, когда нет трения, КПД всех механических преобразователей становится равным единице.

КПД оказался на редкость удачным понятием. Его удалось с успехом применить позднее для оценки и сравнения электрических машин: электромоторов, электрогенераторов, трансформаторов. И здесь в идеальном случае он был равен единице. А в реальном — немного поменьше из-за нагревания обмоток, сердечников, подшипников.

КПД пригодился и для оценки насосов, гидравлических турбин, конденсаторов, расширителей — детандеров. И здесь зависимость оставалась прежней — в идеальном случае КПД был равен единице. Все это как будто убеждало: КПД — универсальное понятие. Если он равен единице, преобразователь — идеальный и работает без потерь.

С помощью тепловых машин Силач и Огнепоклонник смогли с успехом выполнять обязанности друг друга.

А — Огнепоклонник с помощью огня и тепловой машины получает механическую работу. Для этого газ с температурой, близкой к атмосферной, адиабатически сжимается 1–2, и его давление и температура возрастают. Затем газ изохорно нагревается 2–3, и его температура и давление возрастают еще больше. После этого газ адиабатически расширяется 3–4, совершая механическую работу. Часть ее идет на сжатие холодного газа, а оставшийся избыток и составляет полезную работу двигателя. Расширившийся, но еще нагретый газ изохорно охлаждается 4–1 для последующего сжатия. В тепловом двигателе главный интерес для нас представляет полезная работа, изображающаяся площадью 1-2-3-4. Эффективность же двигателя оценивается с помощью КПД= пл. 1-2-3-4/пл. 6-2-3-5. Очевидно, что эта величина никогда не может быть больше 1.

Б — Силач с помощью механической работы и тепловой машины может повышать и понижать температуру. Для этого газ при температуре, близкой к атмосферной, адиабатически сжимается 1–2, и его температура и давление возрастают. Затем от этого газа изохорно отводят теплоту 2–3, так что его температура и давление уменьшаются. После этого охлажденный газ адиабатически расширяют до температуры ниже атмосферной 3–4, и совершаемая им при этом механическая работа частично компенсирует затрату работы на сжатие от внешнего источника. Далее, к охлажденному ниже атмосферной температуры газу подводится теплота 4–1.

Такая тепловая машина в отличие от теплового двигателя не производит механическую работу, а потребляет ее. Взамен же она дает возможность повышать или понижать температуру тех или иных тел. Если нам нужен холод, то машину называют холодильной. В ней нас интересует прежде всего холодопроизводительность, изображаемая на диаграмме площадью 6-1-4-5. Совершенство холодильной машины оценивается так называемым холодильным коэффициентом, который равен пл.6-1-4-5/пл.1-2-3-4. В зависимости от условий холодильный коэффициент может меняться от нуля до бесконечности.

Если же нам нужно нагревание, то та же самая машина именуется тепловым насосом, полезный эффект которого оценивается площадью 6-2-3-5. Совершенство теплового насоса оценивается коэффициентом производительности, равным пл.6-2-3-5/пл.1-2-3-4. В зависимости от условий этот коэффициент может меняться от 1 до бесконечности.