Выбрать главу

Все было хорошо до тех пор, пока в игру не включились тепловые машины. С их появлением вся общность понятия КПД пошла насмарку. Мы уже знаем, с каким трудом удалось увязать опыты Румфорда и Джоуля с идеальным двигателем Карно. Но эту увязку едва ли можно считать удачной. Посмотрите, как в самом сжатом виде описывается теперь положение дел.

Для всех идеальных двигателей, кроме тепловых, КПД равен единице. А вот для тепловых двигателей, даже для идеальных, он всегда меньше единицы и зависит от температуры источника теплоты и окружающей среды. В применении к оценке работы холодильных машин и тепловых насосов КПД вообще утрачивает всякий смысл. В общем случае, чтобы вычислить КПД, надо работу на выходе из машины разделить на работу на входе. На выходе идеальной холодильной машины — холодопроизводительность — теплота, отводимая из холодильной камеры. На входе — механическая работа, затрачиваемая на привод компрессора. Величина, получаемая при делении холодопроизводительности на механическую работу, в зависимости от температуры в холодильной камере и температуры окружающей среды может изменяться от нуля до бесконечности. Назвать ее КПД ни у кого не повернулся язык, поэтому ей дали название холодильный коэффициент и с общего молчаливого согласия приняли: для холодильных машин понятие КПД неприменимо. Тепловой насос вообще не оставил от КПД камня на камне. Если холодильный коэффициент может быть равным и нулю, и единице, то отношение теплоты на выходе к работе на входе для тепловых насосов всегда больше единицы и тоже может достигать бесконечно больших значений в зависимости от температур в нагреваемом помещении и на улице. Такое отношение уж и вовсе неудобно было бы называть КПД, поэтому в теории тепловых насосов вместо КПД пользуются термином коэффициент преобразования.

Но и это не все. Попробуйте вычислить КПД электрической спирали, погруженной в бак с водой. Вы убедитесь, что он равен единице. Спираль, сунутая в воду, оказывается более экономичным устройством, чем тщательно вылизанная и выверенная газовая турбина!

В чем же дело? Почему КПД — понятие, удобное для оценки различных процессов и механизмов, утрачивает смысл, как только речь заходит о тепловом движении?

Это произошло потому, что необходимость в понятии КПД возникла прежде всего у техников. Их мало интересовали логические тонкости. Что бы там ни происходило внутри машины, для практика важно знать одно: на выходном валу реальной зубчатой передачи мощность всегда меньше, чем на входном. Это справедливо для винтовой передачи, электромотора, трансформатора и т. д. КПД, вычисленный как отношение энергии на выходе и на входе, показывал, какая часть энергии теряется.

Но почему же, когда попытались применить КПД к тепловым процессам и машинам, все получалось так неудачно? Оказывается, не учитывая теплоты при вычислении КПД реальных механизмов, практики интуитивно, не отдавая в этом отчета, сопоставляли эти механизмы с идеальными, работающими без потерь. По их мнению, утверждение: КПД зубчатой передачи 95 %, должно обозначать: мощность на выходном валу зубчатой передачи на 5 % меньше, чем на входном. На самом же деле такое утверждение означает: идеальная, работающая без потерь зубчатая передача для выполнения той же работы и в таких же условиях потребует на 5 % меньше мощности.

Казалось бы, между двумя толкованиями нет принципиальной разницы. Но это не так, ибо первое, будучи применимо к идеальным тепловым машинам, разом уничтожает всю притягательность, и общность понятия КПД заставляет вводить холодильный коэффициент и коэффициент преобразования, могущие достигать бесконечных значений, и т. д.

Второе толкование, напротив, вносит ясность в понятие КПД и спасает от той неразберихи, о которой говорилось раньше. Оно показывает, что КПД нет смысла применять для идеальных машин. В обратимом мире, как мы уже выяснили, все механизмы дают максимум того, что они могут дать, и смешно требовать от них большего. Гораздо разумнее принять идеальные механизмы за эталон для сравнения с реальными. Тогда мы увидим, что понятие КПД рождается, образно говоря, на стыке реального и идеального миров. Смысл КПД — показывать, насколько реальная машина приближается к идеальной, работающей в точно таких же условиях и выполняющей точно такую же работу.

Главное, что отличает реальную машину от идеальной, — это потери, вызванные необратимым переходом различных форм движения в тепловое, и выравнивание температур путем теплообмена без совершения работы. Что же происходит в мире при протекании таких необратимых процессов? Энергия, как мы выяснили, остается постоянной. А что меняется?