В свое время лорд Кельвин не пожелал пользоваться выдуманной Клаузиусом энтропией и предпочитал ей понятие работоспособности. Представьте себе, что в какой-то момент на нашей планете сразу выключились все источники необратимости. Тогда в химическом топливе, в воде, находящейся выше уровня океана, в движущихся по инерции телах, нагретых до температуры выше окружающей среды веществах окажется запасенным огромное количество механической энергии. В этом обратимом мире все формы движения могут бесконечно долго без всяких потерь переходить друг в друга, но общее количество этой энергии сохраняется неизменным. Включим теперь источники необратимости — количество работы начнет уменьшаться. И когда все придет к одинаковой температуре, опустится на один уровень, равномерно перемешается, когда электрический потенциал станет всюду одинаков, короче говоря, когда все мыслимые интенсивные параметры выравняются — запас работы станет равным нулю. Хотя энергия останется неизменной, в результате таких процессов исчезнет как раз то, что Кельвин называл работоспособностью и что сейчас, по предложению немецкого ученого Э. Ранта, стали именовать эксергией.
Эксергия — это та часть общей энергии тела, которая в данных условиях может быть превращена в работу. Эксергия учитывает не только параметры самого вещества или системы, но и параметры окружающей среды. Скажем, энергия одного килограмма воды, находящейся на поверхности океана, огромна, если считать ее по отношению к центру земли. Но превратить ее в работу невозможно: средний уровень Мирового океана аннулирует способность этого килограмма совершать работу. Вот другой пример: в баллоне, из которого выкачан воздух, нет никакой энергии. Однако эксергия его больше нуля: открыв клапан, мы можем создать поток воздуха внутрь баллона, поставить газовую турбинку на его пути и заставить окружающую среду совершать работу.
Если на улице температура 293 К, то газ с такой температурой имеет эксергию, равную нулю, хотя его энергия относительно абсолютного нуля довольно велика. А газ при 100 К, обладающий втрое меньшей энергией, имеет эксергию, отличную от нуля. Соединив с ним окружающую среду через идеальную тепловую машину, мы можем использовать эту разницу температур для получения механической работы. Теперь нетрудно понять, что сметливый сосед крал у простодушного баварского лавочника не энергию, как доказывал тот, а эксергию, работоспособность.
При любых изменениях в обратимом мире эксергия остается постоянной. Необратимые процессы — вот истинные «пожиратели эксергии», непрерывно уменьшающие ее запас. Это наводит на мысль, что между эксергией, которая уменьшается в необратимых процессах, и энтропией, которая в них увеличивается, есть какая-то связь. Такая связь действительно существует, но только в тех случаях, когда происходит возрастание энтропии вследствие необратимого процесса. Скажем, подводя обратимо теплоту к телу, мы увеличиваем его энтропию, но эксергия не меняется. Если же нагревать предмет необратимо — энтропия возрастает, а эксергия уменьшается. Следовательно, уменьшение эксергии связано не вообще с увеличением энтропии, а лишь с увеличением энтропии в необратимых процессах.
Понятие эксергии избавляет нас от необходимости каждый раз сравнивать реальный механизм с точно таким же и работающим в таких же условиях идеальным. Теперь достаточно эксергию на выходе из механизма разделить на эксергию на входе, чтобы получить КПД. Этот КПД для всех машин, в том числе и тепловых, меньше единицы, и чем он ближе к единице, тем меньше отличается механизм от идеального.
Основные источники потерь тепловой электростанции Силачом и Огнепоклонником оцениваются по-разному. Так, считая только по ЭНЕРГИИ, Огнепоклонник полагает, что главный источник потерь на электростанции — конденсатор. Силач же, считая по ЭКСЕРГИИ, видит: главный источник потерь — котел. И Силач прав — именно в совершенствовании котлов, в повышении параметров пара — столбовой путь развития энергетики.
Эксергия вносит ясность в понимание работы тепловых машин, она реабилитирует некоторые части тепловых установок и находит истинных виновников потерь. Например, долгое время считалось, что главные потери паровой установки — это теплота, отдаваемая в конденсаторе охлаждающей воде. И действительно, в конденсатор уходит почти половина теплоты, полученной рабочим телом в котле. Котел, наоборот, считался самой экономичной частью установки: КПД, подсчитанный по энергии, получался 96–98 %. Но стоило проследить, что происходит с эксергией, и стало ясно: конденсатор надо реабилитировать, это одна из самых экономичных частей установки, в которой эксергия уменьшается всего на 3 %. И это понятно, температура в конденсаторе всего на несколько градусов выше температуры окружающей среды. Истинный же виновник потерь — котел.