Впрочем, нельзя сказать, чтобы теоретики совсем ничего не дали учению о конвекции. Напротив, еще Ньютон установил основное уравнение конвективного теплообмена. Он считал, что количество теплоты, переданное этим процессом, пропорционально поверхности нагрева, разности температур и коэффициенту теплоотдачи. Но основное заблуждение Ньютона состояло в том, что этот самый коэффициент он считал постоянным. В действительности же нет на свете величины, более причудливо зависящей от десятков факторов. Здесь и теплопроводность рабочего тела, и его вязкость, и плотность, и скорость, и теплоемкость. Иногда на величину коэффициента теплоотдачи влияет разность температур между стенкой и рабочим телом. У трубки, расположенной вдоль потока, теплообмен идет не так, как у трубки, расположенной поперек, и т. д.
Но сколь ни многочисленны эти факторы, все они влияют на конвективный теплообмен лишь постольку, поскольку влияют на пограничный слой. Эта невидимая рубашка, окутывающая любое тело, погруженное в жидкость или газ, надежная защита против теплопередачи. И чем вязче жидкость, чем меньше ее плотность, тем труднее сдуть с поверхности тела эту рубашку. Один из механизмов сдувания пограничного слоя возникает автоматически и знаком каждому по работе печного отопления. Порции воздуха близ стенки печки, нагреваясь за счет теплопроводности, становятся легче и поднимаются вверх, на их место подтекают новые порции холодного воздуха — так возникает свободная конвекция. Скорости воздуха здесь очень малы, толщина пограничного слоя — около сантиметра. Поэтому за 1 час 1 м2 поверхности при разности температур в 1 °C передает около 5–8 ккал.
Свободная конвекция сильно зависит от плотности рабочего тела. На высоте 20 км, где плотность воздуха меньше, чем на поверхности земли, в 18,5 раза, коэффициент теплоотдачи оказывается вчетверо меньшим. При еще более сильном разряжении архимедова сила, благодаря которой нагретый воздух всплывает вверх, может стать недостаточной для преодоления гидравлического сопротивления, и тогда механизм свободной конвекции перестает действовать.
Зато в плотной среде этот механизм действует весьма энергично. Свободная конвекция в воде — например, при нагревании воды в чайнике — дает коэффициенты теплоотдачи от 200 до 1000 ккал/ч м2 °С. А когда вода начинает кипеть, когда паровые пузыри дробят, сдувают, срывают пограничный слой, когда, всплывая, они перемешивают горячие и холодные порции жидкости, коэффициент теплоотдачи может достигать 40–45 тыс. ккал/чм2°С. Обратный процесс — конденсация пара идет еще интенсивнее. Здесь коэффициент теплоотдачи достигает 100–120 тыс. ккал/ч•м2•°С. Но и в том и в другом случае необходимо соблюдать одно условие: жидкость при кипении должна соприкасаться непосредственно с нагревающей поверхностью, а пар при конденсации должен соприкасаться непосредственно с поверхностью охлаждающей. Стоит поверхности покрыться при кипении непрерывной паровой, а при конденсации непрерывной жидкостной пленкой — и теплоотдача резко падает.
Толщину пограничного слоя можно уменьшить принудительным образом, обдувая горячую стенку воздухом с помощью вентилятора. Достаточно, скажем, повысить скорость до 5 м/с, и коэффициент теплоотдачи с 8 ккал/чм2°С при свободной конвекции поднимается до 30 ккал/ч•м2•°С. При такой принудительной конвекции все, что способствует турбулизации — завихрениям в потоке, увеличивает коэффициент теплоотдачи. В этом смысле шероховатые стенки лучше, чем идеально гладкие, поперечное обтекание труб лучше, чем продольное, тонкие трубки лучше, чем толстые.
До сих пор мы рассматривали механизмы передачи тепла в отрыве один от другого. Но на практике такие случаи чрезвычайно редки. Гораздо чаще на практике приходится сталкиваться с совокупным действием всех трех механизмов теплопередачи. Действием, которое делает процессы в окружающем нас мире необыкновенно сложными, необыкновенно трудными для научного анализа, но зато и необыкновенно разнообразными, богатыми и интересными для наблюдения и размышления возможностями…
Занимаясь исследованием теплопередачи, инженер-теплотехник, в сущности, ставит перед собой не бог весть какую сложную цель — уметь, когда нужно, полностью останавливать тепловой поток, а когда нужно, делать его сколь угодно большим. Конечно, как человек практики он понимает, что в жизни не бывает ни «нулей», ни «бесконечностей». И поэтому вполне готов удовлетвориться скромным решением: умением сильно замедлять и сильно убыстрять теплопередачу. И можно только дивиться тому множеству головоломнейших трудностей, которые ожидают его на пути к достижению этой простой на первый взгляд цели.