Выбрать главу

Стенки камеры сгорания жидкостного реактивного двигателя и его сопло должны как можно лучше проводить тепло и передавать его охлаждающему потоку. Малейшая заминка в этом процессе приведет к моментальному испарению стенки: ведь на каждый квадратный сантиметр ее поверхности обрушивается тепловой поток в 300 ккал/с! Действительно, когда стенка сделана из жаростойкой стали, ее тепловое сопротивление составляет примерно половину общего сопротивления, другие 45 % приходятся на долю конвективно-лучистого теплообмена в камере сгорания и 5 % — на сопротивление теплоотдачи от стенки к охлаждающему топливу. А поскольку температура выше всего там, где наибольшее тепловое сопротивление, оказывается, что наибольший температурный перепад «садится» именно на стенку. Стоит заменить жаропрочную сталь в 10 раз более теплопроводным алюминием, и доля стенки в тепловом сопротивлении упадет всего до 10 %, а доля конвективно-лучистого теплообмена возрастет до 84 %. В результате максимальный температурный перепад перекочевывает на слои газа в камере сгорания, где он совершенно не угрожает целостности конструкции, а температура стенки резко понижается.

В представлении большинства людей наибольшие температуры надо искать там, где сжигается топливо или горит электрическая дуга. Но, как это ни парадоксально, самые высокие температуры, от которых инженерам приходится защищать конструкционные материалы, возникают при торможении. Искры, сыплющиеся из-под тормозных колодок электропоездов, дают некоторое представление о процессе, который по мере повышения скорости становится одним из самых мощных генераторов высоких температур. Образно говоря, трудности, возникающие при торможении, есть зеркальное отображение трудностей, преодолеваемых при разгоне. Ведь чем мощнее двигатель, чем большую скорость он сообщает аппарату, тем сильнее сопротивление, тем больше вследствие необратимости выделяется тепла на его поверхности, тем выше температура обшивки. Так, обшивка аппарата, летящего на высоте 37 км со скоростью 8 тыс. км/ч, разогревается до 2500 °C. При скорости 18 тыс. км/ч температура обшивки должна превышать температуру поверхности Солнца! А поскольку аппараты, возвращающиеся из космоса, движутся с еще большими скоростями, их защита от нагревания смещает проблемы теплопередачи в плоскость совершенно фантастическую.

Воздушная подушка, которая возникает перед мчащимся с космической скоростью телом, мгновенно превращается в ослепительно сияющий сгусток плазмы, обрушивающий на породившую его стенку неимоверные тепловые потоки. Правда, сравнительная кратковременность вхождения в атмосферу позволяет применить не совсем обычные методы тепловой защиты.

Как на несколько минут, пока не намокли листья, можно укрыться от дождя под деревом, так можно и стенку защитить от нагрева слоем материала, быстро отводящего тепло от поверхности, распределяя его равномерным слоем по всей толще. При более длительных нагрузках стенку можно охлаждать с помощью трубок, по которым прокачивается жидкость или газ. Можно, наконец, нагнетая сквозь поры газ или жидкость, очень эффективно охлаждать саму стенку и, утолщая пограничный слой, уменьшать поток от источника тепла к стенке. Не нужно много фантазии, чтобы сделать следующий шаг и защищать стенку слоем металла, который, плавясь или испаряясь, отнимает тепло от потока и оказывает, таким образом, охлаждающее действие (не совсем привычно звучит слово «охлаждение», когда речь идет о кипении при 2–3 тыс. градусов). Следующий шаг — абляция.

Оказывается, не разлагайся молекулы кислорода и азота воздуха на атомы, не поглощай они энергию при этом разложении, и температура летательного аппарата при скорости 12 тыс. км/ч была бы не 4000°, а 7500 °C. Почему же не покрыть стенку таким веществом, которое химически разлагалось бы при нагреве, отнимая при этом огромное количество тепла у набегающего потока. Именно так и работают абляционные покрытия. Разлагаясь, они создают струи газов, уносящих поглощенное тепло, и внешне процесс похож на горенке. Но необычно это горение, которое порождает охлаждающее пламя. Наконец, можно покрывать стенку веществом, которое под действием высокой температуры вступает с воздухом в реакцию, сопровождающуюся поглощением тепла.

Теперь, зная, как сильно зависит от теплопередачи космическая техника, как мучительно и непросто возвращение от звезд к планете Земля, мы сможем понять, почему произвело сенсацию среди специалистов-теплотехников появление тепловой трубки…