Открытие сверхпроводимости, при которой электрический ток может циркулировать в металлическом кольце сколь угодно долго, не испытывая никакого сопротивления, натолкнуло ученых на мысль, что может существовать и сверхтеплопроводность. Однако первые же даже не очень точные опыты показали, что, когда металл переходит в сверхпроводящее состояние, его теплопроводность становится меньше, чем в нормальном состоянии. И чем ниже опускается температура, тем ближе сверхпроводник к абсолютному теплоизолятору. Причина этого эффекта проста: электроны, ответственные за сверхпроводимость, «умирают» для теплового движения, не могут участвовать в нем. И чем ниже температура сверхпроводника, тем меньше остается в его теле электронов, способных проводить тепло.
Эффект, который ученым не удалось открыть в природе, инженерам удалось создать искусственно, силой своей изобретательности. И что самое удивительное, в основу этого изобретения легли процессы давным-давно всем известные: кипение и конденсация жидкостей, характеризующиеся необычайно высокими коэффициентами теплоотдачи. С одного квадратного метра поверхности нагрева при перепаде температур всего в 1 °C кипящая вода за час может снять около 50 тыс. ккал тепла, а конденсирующийся пар — около 100 тыс. ккал. Нагретое тело можно быстро охлаждать кипящей жидкостью, получившийся при этом пар чисто механически транспортировать к холодному телу, конденсируясь на котором, он так же быстро отдает тепло, снова превращаясь в жидкость. Возвращая жидкость в зону нагрева, ее опять можно испарить, опять перегнать пар к холодному телу, опять сконденсировать… Другими словами, можно заставить рабочее тело непрерывно циркулировать и переносить при этом тепло. Причем, поскольку сопротивление движению пара гораздо меньше, чем сопротивление движению тепла в теплопроводящем стержне, потоки тепла могут быть увеличены в сотни, а то и тысячи раз.
В одной из первых конструкций через трубку диаметром 2,5 см тепловой поток мощностью 11 кВт передавался на 70 см при перепаде температур, который практически невозможно было измерить. Для сравнения укажем: чтобы выполнить такую задачу с помощью одного из лучших теплопроводников — меди, понадобился бы стержень диаметром 2,75 м, весом 40 т!
Особенно эффектно выглядела одна из первых демонстраций литиевой трубки. Один конец ее экспериментаторы сунули в середину электрической дуги, а другой — в бак с холодной водой. Стержень мгновенно раскалился докрасна и вода в баке закипела. Чтобы оценить всю необычайность этого опыта, достаточно привести такие цифры. Для передачи 15 кВт тепловой мощности по медному стержню с поперечным сечением 1 кв. см на расстояние 1,5 м его горячий конец должен быть раскален до 180 тыс. (!) градусов — в 30 раз горячее поверхности Солнца! А литиевая трубка таких же размеров, нагретая до 1500 °C, передает эту же мощность при разности температур на концах всего в 5 °C.
С помощью тепловых трубок — устройств, температура которых остается практически постоянной по всей длине, — можно очень легко и удобно концентрировать тепловые потоки. Благодаря этому возникает возможность создать источники энергии на радиоактивных изотопах с низкой плотностью тепловыделения: поглощая тепло на большой поверхности, тепловые трубки концентрируют его на малой площади, где оно удобно может быть использовано для привода теплового двигателя либо термоэлектрического элемента. Так же просто с помощью тепловых трубок можно «разжижать» тепловые потоки, что очень важно во всевозможных системах охлаждения…
В самом деле, хуже всего проводят и излучают тепло газы. Они же хуже всего отдают и получают его при конвекции. А поскольку источники энергии чаще всего генерируют ее именно в виде горячих газов и поскольку газы — лучшее рабочее тело для всевозможных тепловых машин, именно газы всегда были настоящим камнем преткновения в инженерной теплопередаче. Например, в котле от газов в топке теплота передается к внешней поверхности трубки излучением и конвекцией, от внешней поверхности трубки к внутренней — теплопроводностью, от внутренних поверхностей трубок к воде — конвекцией при испарении. Каждый из этих участков представляет собой частное тепловое сопротивление. И как скорость эскадры измеряется скоростью самого тихоходного корабля, так и суммарное тепловое сопротивление целиком зависит от самого большого из всех частных сопротивлений. А таким сопротивлением практически всегда оказывается сопротивление при теплоотдаче к газу. Увеличивая с помощью вентиляторов скорость обдувания трубок газовым потоком, скорость теплоотдачи можно увеличить до нескольких сот ккал/чм2°С. И это предел. Дальнейшее увеличение теплового потока возможно только за счет увеличения поверхности, по которой идет теплообмен с газом: в результате на газовой стороне появляются всевозможные замысловатые ребра. Но вот беда — к концам ребер теплота поступает только за счет теплопроводности, а поскольку она сравнительно невелика, температура ребер оказывается гораздо ближе к температуре охлаждающего газа, чем к температуре охлаждаемых деталей. В результате эффективность их резко падает…