Выбрать главу

Но, оказывается, в этом правдоподобном рассуждении таится подводный камень. Хорошо, пусть шар совершает свои эволюции в обратимом мире. А где находятся часы, по которым мы измеряем время, затрачиваемое им на эти эволюции?

Если они находятся «по сю сторону» мысленного эксперимента, то есть в нашем реальном мире, они измеряют и наше реальное заведомо необратимое время. Если же они находятся «на том берегу», то есть тоже в обратимом мире, они не смогут измерять никакого времени вообще…

Такой вывод на первый взгляд может показаться необоснованным. В реальном мире часовые мастера усердно стараются свести к минимуму трение — главную помеху точности хода. А в обратимом мире трение полностью исчезает, маятник будет колебаться сколь угодно долго, поэтому гири или пружины не нужны. Останется только поставить храповое колесо с собачкой, и стрелка будет отсчитывать число колебаний маятника. Но вот в этом-то «останется только» и вся загвоздка.

Раньше, да и сейчас, нередко приходилось слышать, что «необратимым является процесс, который не может протекать в обратном направлении». Макса Планка эта формулировка выводила из себя. По его собственному признанию, он боролся с ней на протяжении всей жизни. Необратимый процесс — справедливо считал Планк — это процесс, при котором суммарная энтропия всех участвующих в нем тел возрастает. Но Планк ошибочно полагал, что механизму можно придать свойство одностороннего движения с помощью каких-то полностью обратимых устройств. Он проглядел, что критикуемая им формулировка не противоречит той, которую он считал правильной.

Кажется, первый, кто заметил это, был американский физик Р. Фейнман. По его мнению, в обратимом мире, где нет потерь на трение, собачка, раз сорвавшись с зубца храпового колеса, должна начать совершать бесконечно долгие колебания и в результате не сможет надежно запирать попятное движение механизма. Выходит, часы в обратимом мире не смогут работать, так как трение, выполняющее роль помехи в подшипниках, играет принципиальную роль в храповом или анкерном механизме. Без трения в этом механизме стрелка часов будет колебаться в такт маятнику, но не будет суммировать числа его качаний.

Эта заковыка долгое время считалась чисто технической трудностью, которую можно преодолеть изменением конструкции или применением нового принципа измерения времени. Но, увы, трудность эта оказалась методологической. Ее не удалось преодолеть даже с помощью атомных и молекулярных часов — тоже существенно необратимых механизмов. И это способствовало уяснению принципиально важной истины: с помощью идеальных, полностью обратимых механизмов, при работе которых суммарная энтропия участвующих в процессе измерения тел не увеличивается, измерение времени невозможно. А раз в обратимом мире с помощью обратимых устройств измерить время в принципе нельзя, то это значит, что в таком мире его попросту нет!

Вот почему фраза, которую некогда любил повторять французский математик Э. Пикар — «Мы измеряем время с помощью движения, а движение — с помощью времени» — в свете новых взглядов потребовала уточнения, ибо, как стало ясно, не всяким движением можно измерять время. По мнению французского физика О. Коста де Борегара, формулировку Пикара следовало бы скорректировать так: «Мы измеряем время с помощью изменений, а изменения — с помощью времени».

А что такое изменения? Да ведь это наши старые знакомые — компенсации Клаузиуса, те самые компенсации, по которым можно безошибочно определить, был или не был тот или иной процесс необратимым. Те самые компенсации, которые только тогда и возможны, когда в дело вмешивается необратимость.

Почему так? Да потому, что только при наличии устойчивых изменений — компенсаций — можно отличить прошлое от будущего, предшествующий момент от настоящего, причины от следствий. В обратимом мире причины и следствия бесконечно и непрерывно меняются местами. К примеру, упавший с высоты шар вызывает следствие — сжимает пружину. Это следствие становится причиной того, что шар снова выбрасывается на прежнюю высоту. Это следствие, в свою очередь, снова становится причиной падения шара. И так до бесконечности. И в этой череде бесконечно повторяющихся состояний теряется время — путеводная нить, позволяющая отличить настоящее от прошедшего…

Представим себе положение: перед нами находится черный, полностью изолированный ящик, внутри которого происходят какие-то процессы. Мы не можем заглянуть внутрь этого ящика, не можем просветить его рентгеновскими лучами или ультразвуком. Единственный прибор, имеющийся в нашем распоряжении, — это термометр. Если, поместив этот прибор внутрь черного ящика, мы увидим, что показания его не меняются, какие заключения можем мы сделать из этого факта? Прежде всего мы можем предположить, что в ящике происходят только обратимые процессы. При таком предположении «молчание» термометра объясняется наиболее просто: запрет, налагаемый в обратимой системе на теплообмен, лучше всякой теплоизоляции предохранит шарик термометра от нагрева.