Взглянув на дело с современной точки зрения, мы должны отметить любопытную деталь: все эти процессы существенно необратимы. Так, в румфордовских опытах теплота добывалась с помощью трения — непосредственного превращения механического движения в тепловое. В процессах нагрева с помощью теплопроводности и теплоемкости срабатывал другой механизм необратимости — непосредственный теплообмен — передача теплоты от горячих тел к холодным. Выходит, в первых научных исследованиях тепловые процессы представали взорам ученых в неочищенном, завуалированном необратимостью виде. И необратимость так коварно упрощала тепловые явления, ее последствия казались столь естественными и принципиально свойственными тепловому движению, что очищение тепловых процессов от последствий необратимости мог произвести именно гений, достижения которого далеко не сразу могли быть восприняты не только его современниками, но и учеными последующих поколений…
Таланты Лазара Карно — видного деятеля Великой Французской революции и талантливого математика, механика и инженера — разделились поровну между двумя его сыновьями. Младший — Ипполит стал политическим деятелем, социологом, министром. Старший — Сади оказался гениальным ученым. Имя младшего гремело при жизни и было почти забыто после его смерти. Старший, наоборот, приобрел мировую известность через много лет после смерти. Славу ему принесла единственная опубликованная им в 1824 году книжечка в 40 страниц — «Размышление о движущей силе огня и о машинах, способных развивать эту силу». Говорили, что основную идею этого сочинения подсказал Сади его отец, который в своей книге «Основные начала равновесия и движения» писал: «…необходимо возвыситься до возможно большей общности, не останавливаться ни на какой конкретной машине, не пользоваться аналогиями, но исходить из основных аксиом механики». Хотя эта мысль действительно лежит в основе «Размышления о движущей силе огня», это нисколько не умаляет заслуг Сади Карно перед наукой. Идеализация, необходимая для анализа тепловых машин, потребовала от него такого проникновения в суть дела, такой смелости и глубины мышления, что подсказка, какой бы ценной она ни была, едва ли могла сыграть решающую роль.
Бросив свет понимания на работу тепловых двигателей, показав, что развитие их пойдет по пути повышения температуры пара, разъяснив, что простая, не сопровождающаяся повышением начальной температуры пара замена воды в паровых машинах ртутью, серой и другими веществами ничего не даст, Карно навсегда завоевал на свою сторону сердца инженеров-теплотехников. И этим оказал неожиданно мощную поддержку теории теплорода…
Как это ни удивительно, Карно — сторонник теории теплорода. По его убеждению, эта невесомая, но неуничтожимая материя может быть уподоблена воде, приводящей в движение мельничное колесо. Количество воды остается все время неизменным, работа же совершается за счет простого падения воды с высокого уровня на низкий. Чем больше напор — разность уровней, тем большую работу совершает один килограмм воды. В принципе, считал Карно, тепловые двигатели работают примерно так же. Разность температур в котле и в конденсаторе подобна разности уровней воды. Теплород эквивалентен воде, его количество неизменно, и в конденсатор попадает ровно столько теплорода, сколько выходит из котла. Приняв за аксиому неуничтожимость теплорода, Карно особенно ясно понял принципиальную важность разности температур в котле и в конденсаторе для работы тепловых машин. Подобно тому как огромные количества воды в океане бесполезны для получения работы, поскольку воде некуда стекать, так и огромные количества теплового движения, по сути дела, мертвы, если нет перепадов температур, нет стока для теплорода. Карно доказывал: мало иметь источники теплорода, надо еще иметь и резервуары, в которые он мог бы стекать.
При чтении «Размышления о движущей силе огня» видно, что Карно выступает прежде всего как инженер (кстати, он и был капитаном именно инженерных войск французской армии). Главное для него — исследование машины, то есть чисто инженерная задача. Очищение же тепловых процессов от необратимости — величайшее научное достижение — для него не более чем вспомогательный прием. Не удивительно, что успешное решение первой задачи поразило современников гораздо сильнее, чем гениальное решение второй.
После исследования Карно, еще больше укрепившись в мысли о неуничтожимости теплорода, ученые постарались не только отмахнуться от экспериментов Румфорда, но и долго отказывались всерьез обсуждать вдохновенные прорицания немецкого врача Роберта Майера и скрупулезные опыты манчестерского пивовара Джеймса Джоуля. Эти незнакомые и непохожие люди пришли к закону сохранения энергии независимо друг от друга. Оба они установили, что «движущая сила» сохраняется при изменениях любых форм движения. Однако Майер решил проблему в общем виде, взяв переход механической работы в теплоту как частный случай; а Джоуль, наоборот, — сначала экспериментально определил механический эквивалент теплоты, а потом высказал мысль, что, по-видимому, и при всех других превращениях «движущая сила» сохраняется.