Выбрать главу

И все же главное назначение подземного тепла — электроэнергетика. В связи с энергетическим кризисом, охватившим многие страны, большая роль начинает отводиться гидрогеотермальным ресурсам. В 1980 году мировая мощность ГеоТЭС составляла немногим более 2000 мегаватт, то есть не достигала даже 1 % от всей вырабатываемой в мире электроэнергии. Однако уже в 1985 году она должна увеличиться в 3 раза, а в обозримом будущем даже в 6–10 раз, причем в основном за счет стран Азии и Америки.

Так как человечество только начинает осваивать гидро-геотермальную энергию, роль ее в мировом энергетическом балансе пока ничтожна. Однако она возрастает быстрее, чем доля традиционных видов энергии: скажем, 15 тысяч мегаватт, которые в США собираются получать на ГеоТЭС через 10 лет, уже составляют 2 % общего производства электроэнергии. А на Филиппинах к 1985 году намечено довести мощность геотермальных электростанций до 18 % от общей выработки энергии.

В Японии разработан правительственный проект «Северное сияние», цель которого — обеспечить за счет гидро-геотермальных ресурсов 1/3 потребности страны в электроэнергии.

Промышленными водами, или «жидкой рудой», обычно принято называть природные воды с концентрацией отдельных компонентов, обеспечивающей экономически выгодную добычу и переработку.

Соленые воды и рассолы, выводимые источниками, очень давно используются для получения поваренной соли. Об этом упоминал еще древнегреческий историк Геродот. На Руси в XIII веке для снабжения солеварен рассолом практиковалось «верчение» скважин и обсадка их деревянными трубами. Добыча поваренной соли из подземных рассолов в больших масштабах производилась также в Сибири, Германии, Китае, на Ближнем Востоке. С XIX века в Италии из парогидротерм добывается борная кислота, а в начале XX века из рассолов и морской воды — бром и иод. Положение изменилось во второй половине нашего столетия, когда резко увеличилось количество извлекаемых компонентов.

Сейчас в мире из промышленных вод получают весь иод, 70% брома, значительную часть лития, борной кислоты и глауберовой соли, а также других элементов. Для добычи поваренной соли, кроме рапы озер, теперь применяются главным образом искусственные рассолы, получаемые в результате выщелачивания пластов каменной соли. Кондиционными считаются такие воды, содержание элементов в которых превышает (в миллиграммах на литр): брома — 200, иода — 10, бора — 100, лития — 10, рубидия — 3, цезия — 0,5, германия — 0,05, калия — 1000, стронция — 300. Иногда извлекают магний, вольфрам, уран, радий. Рентабельность эксплуатации промышленных вод зависит и от других условий, среди которых следует назвать производительность скважин и утилизацию отработанных вод.

Промышленные воды не зря называют «жидкой рудой». Показанный на рис. 10 рассол имеет, наряду с хлоридом кальция, уникальную концентрацию брома, магния, стронция, калия, бора, редких щелочей. Можно сослаться и на металлоносный термальный рассол полуострова Челекен: изливающие его скважины ежегодно выносят десятки тонн цинка, меди и других металлов.

Насколько важны для использования «жидкие руды», можно судить по иодным водам и бромным рассолам, обнаруженным в Сибири. Иодные воды Западно-Сибирской равнины могут обеспечить сырьем завод с производительностью, несколько превышающей современное производство иода в СССР. В Восточной Сибири реальна возможность организации добычи брома, превышающей его потребность в нашей стране.

Промышленные воды — новый вид нетрадиционного и комплексного минерального сырья, промышленное их значение в полной мере пока оценить трудно. Оно быстро возрастает, что подтверждается обширной информацией о проводимых в развитых странах технологических исследованиях способов комплексного извлечения из промышленных вод различных элементов (США, Япония, Англия, ФРГ, Италия, Франция). Со временем переработка «жидких руд», вероятно, примет массовый характер. «Рассолы, — сказал несколько лет назад академик А. В. Сидоренко, — станут такими же источниками полезных ископаемых, как и твердые минеральные концентрации».

В подземных водах обнаружены почти все химические элементы. Во всяком случае, те, которые пытались определить. Многие редкие и рассеянные элементы не всегда образуют природные скопления, поэтому само присутствие их в природном растворе может представлять практический интерес.

А не находятся ли в подземных водах неизвестные химические элементы, клеточки которых в периодической системе Д. И. Менделеева пока пусты? Такой вопрос поставил первооткрыватель шести последних (с номерами от 102 по 107) из числа известных трансурановых элементов академик Г. Н. Флеров. Возможность их обнаружения весьма вероятна в вулканических, рифтовых и активизированных областях, где поступающие из мантии летучие соединения сверхтяжелых элементов сравнительно легко могут обогащать подземные воды,

Начались поиски. Были отобраны пробы воды из гидротерм Камчатки, Забайкалья, Кавказа. Меня Георгий Николаевич попросил доставить сухие остатки рассолов Сибирской платформы. Увы, ничего похожего на искомые химические элементы и продукты их деления…

Однако предположение Флерова, кажется, подтвердилось в рифтовых зонах и областях альпийской активизации, где в двух пунктах из термальных вод получены сухие остатки, которые в отдельных случаях отличались слабыми импульсами, сходными с таковыми при делении ядер трансурановых элементов. На помощь физикам пришли гидрогеологи Института земной коры СО АН СССР и оконтурили зоны глубинных разломов. Перспективные на «сверхэлементы» участки совпали с гелиевыми аномалиями. Пока не ясна природа самих импульсов. Что это — уже известные или новые (скажем, аналог свинца с номером 114) трансурановые элементы? Полученная информация обнадеживает, однако она еще недостаточна для определенных выводов. Совместные работы физиков и гидрогеологов продолжаются.

ВРАГ И РАЗРУШИТЕЛЬ

Раздвинем горы, под водой

Пророем дерзостные своды.

А. С. Пушкин

Гидрогеологические работы должны опережать работы по изысканию наших материальных ресурсов… опережать эксплуатационные, геологоразведочные и поисковые работы.

И. М. Губкин

Подземные воды?! Да, они. Они не только один из источников благосостояния человечества и комплексное полезное ископаемое, но порой также коварный враг, вызывающий разрушения. Тогда приходится бороться с подземными водами. Борьба в отдельных случаях ведется трудная и упорная, требует значительных материальных затрат.

О подземных водах, ставших врагом и разрушителем, можно говорить много, поскольку в такой роли они выступают довольно часто: при проведении горных работ, в гидротехническом, дорожном и других видах строительства, активизации физико-геологических процессов. Ограничимся рассмотрением отрицательного влияния, при устранении которого требуются специальные мероприятия по борьбе с подземными водами.

Наиболее трудна борьба на месторождениях полезных ископаемых, если они представлены сильно обводненными породами (карстовыми, мощными толщами рыхлых отложений, зонами тектонических нарушений). Тогда для отработки необходимы дорогостоящий водоотлив или особые способы осушения месторождений. К последним относятся цементация, водопонижение, замораживание. Освоение сильно обводненных месторождений приходится откладывать на будущее. Так было, например, с железорудными месторождениями Курской магнитной аномалии, которые открыли еще в первые годы Советской власти, но из-за сложности гидрогеологических условий стали разрабатывать только в 50-х годах, когда появились надлежащие водопонизительные установки. Некоторые месторождения в связи с ростом стоимости водоотлива перестают быть рентабельными. Такая судьба постигла угольные месторождения Кизеловского бассейна на Урале и Слюдянское месторождение флогопита в Прибайкалье.