Выбрать главу

Образцы грунта, доставленные с Луны экипажами кораб лей "Аполлон", изучались более тщательно и разносторонне, большим числом специалистов разного профиля и при более высоком уровне организации научных исследований, чем какой-либо другой материал в прошлом. Для выяснения наличия в образцах живых организмов было проведено множество тестов, и все они дали отрицательные результа ты. Тем же завершились попытки обнаружить в привезенных образцах грунта микроископаемые (микрофоссилии). По данным химического анализа, концентрация углерода в лун ном грунте составляла 100-200 частей на миллион, причем главным образом он был обнаружен в составе неорганиче ских соединений (например, карбидов). Есть основания пола гать, что наличие углерода на лунной поверхности обуслов лено действием "солнечного ветра" - потока высокоэнергети ческих заряженных частиц, испускаемых солнечной короной. Некоторые простые органические соединения были обнару жены в лунных образцах в ничтожно малых (следовых) количествах (порядка нескольких частей на миллион). Разу меется, предполагалось, что на Луне может присутствовать органическое вещество, занесенное метеоритами, но нельзя с уверенностью сказать, имеют ли обнаруженные "следы" органики метеоритное происхождение или они появились в результате загрязнения, вызванного ракетными выхлопами либо прикосновением рук человека уже на Земле. Поскольку

невозможно с достаточной достоверностью говорить о нали чии органического вещества метеоритов, можно предпола гать, что органические соединения на поверхности Луны разрушены. В любом случае нет сомнений, что Луна без жизненна и, вероятно, всегда была такой.

За исключением Титана (спутника Сатурна) и, возможно, Тритона (спутника Нептуна), все спутники планет в Солнеч ной системе похожи на Луну в том отношении, что у них нет сколько-нибудь плотной атмосферы. Представляют интерес Ганимед и Каллисто-два спутника Юпитера, по размерам близкие к планете Меркурий, так как их низкая плотность (см. табл. 4) заставляет думать о наличии на них большого количества воды. Современные модели предполагают, что оба спутника, возможно, имеют под поверхностью океаны, а какая-то часть воды на поверхности находится в виде твердо го как камень льда, при температуре -100 С.

Теперь обратимся к объектам Солнечной системы, массы которых (а в ряде случаев и низкие температуры) достаточ ны, чтобы удержать атмосферу.

Венера

Венера - ближайшая к Земле планета Солнечной системы, которая также наиболее сходна с ней по массе, размерам и плотности (табл. 4). Еще в XVIII в. было установлено, что она имеет атмосферу. Однако сплошной, сильно отражаю щий солнечный свет облачный покров Венеры делает ее поверхность невидимой с Земли. Этим же объясняется боль шая яркость Венеры (это третий по яркости объект на нашем небе), которая издавна привлекала к ней внимание наблюда телей (фото 2). Первоначально предполагалось, что облака на Венере, как и на Земле, состоят из водяных паров и, следовательно, на поверхности планеты имеется изобилие воды. Некоторые ученые представляли Венеру как планету, покрытую громадным болотом, над которым постоянно поднимаются испарения, другие предполагали, что всю ее поверхность занимает гигантский океан. В любом случае казалось, что там великолепные условия для существования жизни.

Спектроскопические результаты, полученные в 1930-х го дах, показали наличие в атмосфере Венеры значительного количества диоксида углерода и полное отсутствие паров воды. Однако возможность обнаружения водяных паров выше верхней границы облачного покрова выглядела сомни

тельной даже при наличии океана на поверхности; поэтому представление о влажной Венере не было отброшено. Выска зывались и другие предположения о характере облачного покрова: от неорганической пыли до углеводородного смога. Только в 1973 г. несколько исследователей независимо друг от друга пришли к выводу, что свойства облаков Венеры лучше всего объясняются, если предположить, что они состо ят из мельчайших капель концентрированной (70-80%) сер ной кислоты; теперь это представление общепринято. Тем временем исследования с применением современных радио астрономических методов и с помощью автоматических межпланетных космических аппаратов показали, что средняя температура поверхности Венеры достигает примерно 450 С, атмосфера под облачным покровом почти целиком (на 96%) состоит из углекислого газа, а давление у поверхности составляет 90 атм. При такой температуре на поверхности Венеры жидкая вода существовать не может.

Высокая температура Венеры обусловлена так называе мым парниковым эффектом: солнечный свет, достигая по верхности, нагревает грунт и вновь излучается в виде тепла, но из-за непрозрачности атмосферы для инфракрасного (теп лового) излучения тепло не может рассеиваться в космиче ское пространство. По некоторым соображениям, Венера могла когда-то иметь океан, который в дальнейшем испа рился при разогревании планеты. Под действием солнечного ультрафиолета водяные пары в основном разрушились, во дород улетучился, а оставшийся кислород окислил углерод и серу на поверхности до диоксида углерода (углекислого газа) и оксидов серы. По-видимому, то же самое случилось бы и на Земле, если бы она находилась так же близко к Солнцу, как Венера. Тот же сценарий позволяет объяснить, почему диоксид углерода на Венере находится в атмосфере, тогда как на Земле он существует главным образом в виде карбо натов, составляющих горные породы. На нашей планете диоксид углерода растворяется в океанах, осаждаясь затем в виде карбонатных минералов кальцита (известняка) и доло мита; на Венере же, где океанов нет, он остается в атмосфере. Подсчитано, что если бы весь углерод на поверхности Земли и в ее коре превратился в диоксид углерода, масса этого газа оказалась бы близкой к той, которая обнаружена на Венере.

Хотя в далеком прошлом условия на Венере могли быть более благоприятными для жизни, чем сейчас, совершенно очевидно, что существование жизни там невозможно уже в течение длительного времени.

Планеты-гиганты

Юпитер, Сатурн, Уран и Нептун, часто называемые планетами-гигантами, намного больше Земли (см. табл. 4). Среди этих гигантов Юпитер и Сатурн являются супергиган тами: на них приходится свыше 90% общей массы планет Солнечной системы. Низкая плотность этих четырех небес ных тел означает, что они состоят главным образом из газов и льда, а поскольку водород и гелий не в состоянии преодо леть действие их гравитационных полей, предполагается, что по своему элементному составу они должны быть больше похожи на Солнце (см. табл. 3), чем на планеты земной группы. Наблюдения Юпитера и Сатурна, проведенные с Земли и с космических аппаратов "Пионер" и "Вояджер", показали, что обе планеты действительно состоят преиму щественно из водорода и гелия. Вследствие большой удален ности Уран и Нептун изучены слабо, но водород и водород содержащий газ метан (СН^) были обнаружены в их атмос ферах с помощью спектрометрических наблюдений с Земли. Предполагается, что в их атмосферах может присутствовать и гелий, но пока его не удается обнаружить из-за отсутствия спектрометров нужной чувствительности. По этой причине сведения, изложенные в этой главе, относятся в основном к Юпитеру и Сатурну.

Многое из того, что известно о структуре планет-гиган тов, основано на теоретических моделях, которые благодаря простому составу планет можно рассчитать достаточно точ но. Результаты, полученные на основе моделей, говорят о том, что в центре как Юпитера, так и Сатурна находится твердое ядро (более крупное, чем земное), давление в кото ром достигает миллионов атмосфер, а температура 12000 25000 С. Такие высокие значения температуры соответству ют результатам наблюдений: они свидетельствуют, что обе планеты излучают примерно вдвое больше тепла, чем полу чают от Солнца. Тепло поступает к поверхности планет из внутренних областей. Поэтому температура уменьшается с удалением от ядра. У верхней границы облачного покрова, видимой "поверхности" планеты, температуры составляют -150 и -180 С соответственно на Юпитере и Сатурне. Окружающая центральное ядро зона представляет собой толстый слой, состоящий преимущественно из металлическо го водорода-особой электропроводящей формы, которая образуется при очень высоких давлениях. Далее следует слой молекулярного водорода в смеси с гелием и небольшими