Выбрать главу

Сейчас этот спор представляет чисто академический интерес. Полученные "Викингами" результаты показали, что, во-первых, повсюду в атмосфере Марса пары воды присутствуют в очень низкой концентрации, и, во-вторых, они нелокализованы вблизи поверхности, а независимо от времени года и места в основном сконцентрированы в атмосфере, на высоте 10 км и выше. В этих условиях невозможно осаждение инея в заметном количестве. Хотя фотокамеры обоих спускаемых аппаратов "Викинг" и об наружили над поверхностью ночные туманы, состоящие из крошечных кристалликов льда, эти частицы слишком малы, чтобы выпасть на почву.

Несмотря на то что эти наблюдения, по-видимому, ис ключают возможность суточных колебаний количества ат мосферных паров воды, сезонное перемещение воды из атмосферы в грунт и обратно, несомненно, происходит, по крайней мере в северной полярной области. Фотокамеры спускаемого аппарата "Викинг-2", совершившего посадку севернее первого, обнаружили на окружающей почве тонкий слой инея, который сохранялся в течение нескольких месяцев

зимнего сезона. Это явление удалось наблюдать на протяже нии двух зимних сезонов. Иней не мог непосредственно сконденсироваться из атмосферы, поскольку в то время в ней было слишком мало водяных паров. Было высказано пред положение, что иней образовался в Южном полушарии, а затем был перенесен частицами пыли в северную полярную область, где на нем сконденсировался углекислый газ; в результате кристаллы льда стали настолько тяжелыми, что выпали на грунт. А после испарения СО^ остался чистый (водяной) лед. Значительная часть воды перемещается из Южного полушария в Северное благодаря этому или ка кому-то иному механизму, но большая часть конденсата, ежегодно накапливающегося в арктической области, состоит из той воды, которая совершает сезонные перемещения между почвой и атмосферой.

Водоемы с соленой водой на Марсе?

Посмотрим теперь, может ли существовать на Марсе жидкая вода в виде высококонцентрированных солевых раст воров. Наиболее подходящей с этой точки зрения солью является хлорид кальция, если, конечно, он имеется на Марсе. В точке замерзания (-51 С) давление паров насыщенного раствора хлорида кальция равно 34 мбар. Однако, как мы знаем, максимальное давление паров воды в атмосфере Марса составляет только 4,5 мкбар. так что и насыщенный раствор хлорида кальция неизбежно будет испаряться. Для поддержания такого раствора, вероятно. должны время от времени пополняться запасы воды. Пред положительно, это может происходить за счет сезонных отложений инея в полярных областях. Но измерения темпе ратуры в месте посадки второго спускаемого аппарата по казали, что такой раствор будет находиться в твердом (замерзшем) состоянии всю зиму и может растаять только в дневное время летом.

Хлорид кальция, по всей вероятности, редко встречается на Марсе. Это обусловлено теми же причинами, что и его малая распространенность на нашей планете. На Земле кальций существует главным образом в виде известняка (карбоната кальция) и гипса (сульфата кальция). Обе эти соли гораздо хуже растворимы, чем хлорид кальция, и из раствора осаждаются быстрее его. На Марсе, как показал проведенный в рамках научной программы "Викинг" анализ неорганических составляющих почвы, диоксид углерода в изобилии присутствует в атмосфере, а сульфат кальция - в почве. По-видимому, как карбонат, так и сульфат кальция образовывались повсюду, где в прошлом на поверхности Марса существовала жидкая вода. Никакая другая соль. которая могла бы присутствовать на Марсе, не может обеспечить существование на планете жидкой воды.

Жизнь при марсианских температурах

Очевидно, что низкая температура на Марсе-главный фактор, определяющий состояние воды на этой планете. Средняя температура марсианской поверхности - 55^С. а на Земле она равна 15"С (см. табл. 4). Даже на экваторе Марса ночная температура опускается намного ниже нуля, хотя днем она может подниматься до 25 С. Несмотря на то что по земным стандартам температура на Марсе неблагоприятна,

сама по себе она не исключает возможности жизни на планете. Известно, что некоторые земные микроорганизмы могут развиваться при температуре ниже - 10 "С, сообща лось даже о росте дрожжей при температуре - 34 С. Неко торые виды клеток способны выживать (хотя и не растут) при очень низких температурах- вплоть до - 196' С. Вполне можно предположить, что если бы на Марсе существовал подходящий растворитель, температурные условия не огра ничивали бы возможность активной жизни, по крайней мере в некоторых областях планеты.

Выводы

Итак, маловероятно, что жидкая вода в каком-либо виде хотя бы время от времени возникает на Марсе. Марсианская жизнь, если таковая существует, должна мобилизовывать все свои возможности, чтобы извлечь воду из атмосферных паров или льда и использовать ее в качестве растворителя. В этом процессе потребляется значительное количество энергии. На Земле некоторые организмы, обитающие в пустынях, для получения .воды действительно используют ее пары. Далее в этой главе мы расскажем, какими способами обитатели пустынь получают жидкую воду.

Вода в биологических системах

Водная активность

Все клетки (за исключением тех, которые находятся в состоянии покоя) живут в том или ином водном растворе. Клетки высших животных омываются сывороткой крови. клетки растений-в тканевом соке, а такие живущие вне организмов клетки, как бактерии, существуют в разного рода водных средах. Растения и животные сами создают свою внутреннюю среду, а клетки микроорганизмов всту пают в обмен непосредственно с внешней средой.

Говоря о потребности клеток в воде, удобно пользовать ся понятием водной активности среды, в которой они обита ют. Водная активность а^.-мера эффективной концентрации воды в растворе, т. е. концентрации воды, доступной для химических реакций. В любом водном растворе часть воды связана с молекулами или ионами растворенного вещества в комплексы, называемые гидратами. Именно образование

гидратов переводит растворенное вещество в раствор. По скольку молекулы воды, участвующие в образовании гидра тов, не доступны для других реакций, водная активность раствора ниже, чем водная активность чистой воды. Давле ние паров раствора, которое прямо связано с водной актив ностью, также ниже, чем у чистой воды. Действительно, водная активность определяется как отношение давления паров раствора, р, к давлению паров чистой жидкой воды, ро, при той же температуре:

а,. = PiPo

Водная активность численно равна относительной влаж ности воздуха, находящегося в равновесии с раствором. Таким образом, если насыщенный раствор хлорида кальция (а^ = 0,75 при 25 С) поместить в сосуд малого объема, то заключенный в этом сосуде воздух будет иметь относитель ную влажность 75%. Как следует из закона Рауля, водная активность слабых растворов равна доле свободных молекул воды в этом растворе.

Высшие растения и животные

В табл. 5 указаны значения водной активности некоторых растворов, представляющих биологический интерес. Все многоклеточные организмы для нормального роста и мета болизма нуждаются в высокой водной активности. Сыворот ка крови человека-среда, в которой мы живем,-характерна для всех млекопитающих. По своей водной активности она лишь незначительно отличается от активности дистиллиро ванной воды. Фактически ее активность соответствует 0,9%-му солоноватому раствору NaCI, который обычно называют физиологическим раствором. Клеточный сок большинства растений по своей водной активности сходен с кровью животных.