Но четко изучить структуры родства у аборигенов мурнгин было крайне важно, так как это племя представляло собой одну из немногих систем ограниченного обмена, в которых различались браки между двоюродными братьями и сестрами: брак с дочерью брата матери разрешался, а брак с дочерью сестры отца — нет. Так как ни одна из известных в то время систем не позволяла объяснить это различие, некоторые авторы выбрали более простое решение — они попросту отказались от анализа закономерностей. Но как может столь точное правило, в котором различаются двоюродные братья и сестры и которое является логичным следствием определенной исходной конфигурации, появиться в системе, не подчиняющейся никаким нормам?
Племя мурнгин делится на два сообщества, иритча и дуа, а каждое из них состоит из четырех кланов. Эти кланы называются нгарит, булаин, каийярк, бангарди, бураланг, баланг, кармарунг и вармут. Названия кланов не имеют особого значения — будем обозначать кланы A1, A2, B1, B2, C1, C2, D1 и D2 Сразу же возникает аномалия, характерная для всех племен этого региона: мужчины не всегда обязаны искать себе жену в другом клане. Существуют две альтернативные формулы, (I)
77
и (II). Первая описывает браки внутри одной и той же половины племени, вторая — в разных. Эти формулы представлены на иллюстрации:
Неизменным остается правило, по которому мать определяет клан своих детей.
Это правило выглядит следующим образом:
ВЕЙЛЬ: Чтобы это общество удовлетворяло нашим условиям, необходимо предположить, что формула, применимая к конкретному человеку, зависит только от его пола и от разновидности брака его родителей, (I) или (II). Для каждого клана определены две разновидности брака, следовательно, имеем 16 различных правил.
Вместо того чтобы обозначить их через М1, M2 ... М16, введем не совсем обычные обозначения, которые помогут упростить расчеты. Во-первых, поставим в соответствие каждому клану племени тройку из нулей и единиц (а, b, с), где
а = 0 для клана А или В, а = 1 для клана С или D,
b = 0 для клана А или С, b = 1 для клана В или D,
с = 0 если номер группы равен 1, и с = 1, если номер группы равен 2.
К примеру, человек из группы А1 будет обозначаться тройкой (0, 0, 0), другой человек из группы В2 — тройкой (0, 1, 1). Верно и обратное: для любой тройки единиц и нулей, к примеру (1, 0, 0), соответствующий клан определяется единственным образом. Так как первое число тройки равно 1, ей соответствует клан С или D. Так как второе число тройки равно 0, ей соответствует клан А или С. Оба этих условия выполняются только в одном случае — если человек принадлежит к клану С. Так как последнее число в тройке равно 0, рассматриваемый человек — член группы С1
78
ЛЕВИ-СТРОСС: Теперь следует обозначить разновидности браков.
ВЕЙЛЬ: Действительно. Мы обозначили каждый клан тройкой чисел (а, b, с).
Добавим к ней четвертую координату, чтобы уточнить формулу брака. Так, каждое правило Mi будет обозначаться четырьмя числами (a, f>, с, d), которые могут равняться 1 или 0. Первые три числа (а, b, с) указывают клан, к которому принадлежит мужчина, вступающий в брак, а четвертое число равно 0 или 1 в зависимости от того, по какой формуле заключается брак — (I) или (II). К примеру, в браке (1, 0, 0, 1) мужчина клана (1, 0, 0), то есть С1 вступает в брак по формуле (II). Следовательно, его женой будет женщина из клана D2, то есть (1,1,1). Клан детей также определяется однозначно: в этом примере они будут принадлежать к клану В2, то есть (0, 1,1). Имеем:
Разновидности брака (1,0,0,1)
Клан отцов (1,0,0)
Клан матери (1,1,1)
Клан детей (0,1,1)
Основная причина, по которой мы выбрали эти обозначения из единиц и нулей, заключается в том, что теперь мы можем выразить отношения родства с помощью циклической группы ℤ/2. Чтобы обеспечить максимальную точность, все нули и единицы следовало бы записать в квадратных скобках, но не будем усложнять обозначения. Благодаря выбранной нотации предыдущий пример можно обобщить, применив две леммы, приведенные ниже.
Лемма 1. В браке разновидности (a, b, с, d) жена принадлежит к клану (а, b + 1, c + d)
В самом деле, мужчины, вступающие в брак по правилу (a,b, с, d), принадлежат к клану (a, b, с). Заметим, что вне зависимости от формулы брака представители кланов А и В всегда будут жениться между собой, равно как и представители кланов С и D.
Так как а = 0 для клана А или В, а = 1 для клана С или D, то первое число в обозначении женщины и мужчины будет одинаковым. Посмотрим, что произойдет со вторым числом. Для этого вновь отметим, что вне зависимости от формулы брака мужчины из кланов А и С будут жениться на женщинах из кланов В и D. Следовательно, если b = 0, то второе число в обозначении женщины будет равно 1.
79
Аналогично, мужчины из кланов В и D вступают в брак с женщинами из кланов А и С. Следовательно, если b = 1, то второе число в обозначении женщины будет равно 0. В обоих случаях b заменяется на b + 1, так как 0 + 1 = 1 и 1 + 1 = 0на ℤ/2.
Осталось посмотреть, как изменится третья координата, обозначающая подгруппу клана. Это единственное число, зависящее от формул (I) и (II). В первом случае, то есть при d = 0, все мужчины вступают в брак с женщинами из своей же подгруппы, следовательно, третье число не изменится. Тем не менее, согласно формуле (II), то есть при d = 1, подгруппы меняются, однако это равносильно сложению d с последней координатой. Лемма доказана! Путем аналогичных рассуждений можно определить клан детей в зависимости от клана матери. Докажем:
Лемма 2. Дети женщины клана (х, у, z) принадлежат клану (х + 1, у, х + z + 1).
Теперь, когда мы знаем, как клан женщины определяет разновидность ее брака и как разновидность брака передается от матери к детям, мы можем объединить эти результаты и описать зависимость клана потомков от разновидности брака родителей. Допустим, что дан брак (а, b, с, d). По первой лемме жена принадлежит к клану (а, b + 1, с + d).
Если теперь подставим во вторую лемму х = а, у = b + 1, z = c + d,
то получим, что дети будут принадлежать к клану (а + 1, b + 1, а + с + d + 1).
Имеем:
Лемма 3. Дети от брака разновидности (а, b, с, d) принадлежат к клану (а + 1, b + 1, а + с + d + 1).
ЛЕВИ-СТРОСС: Следовательно, для определения функций f и g нам не хватает одного — правила, описывающего, как выбор формулы (I) или (II) передается по наследству от родителей к детям. Результаты практических исследований показывают, что возможны четыре ситуации:
(1) Дети следуют той же формуле, что и родители.
(2) Дети следуют обратной формуле.
80
(3) Сыновья следуют той же формуле, дочери — обратной.
(4) Дочери следуют той же формуле, сыновья — обратной.
ВЕЙЛЬ: Обозначим каждый из этих случаев двумя индексами (р, q). Если сыновья придерживаются той же формулы, что и родители, то р = 0, в противном случае р = 1; аналогично определяется q для дочерей. Таким образом, четыре упомянутых вами варианта обозначаются (0, 0), (1,1), (0,1) и (1, 0). Обратите внимание, что если брак описывается формулой, которая обозначается координатой d, то сыновья будут следовать правилу d + р, дочери — d + q. Теперь мы можем описать функцию /. Начнем с брака (а, b, с, d). По лемме 3 дети от этого брака принадлежат к клану (а + 1, b + 1, а + с + d + 1). С учетом изложенных выше рассуждений, их формула брака будет равна d 4- р. Следовательно:
f(а, b, с, d) = (а+1, b+1, а + с + d + 1, d + р).
Чтобы определить g, нужно выполнить еще одно действие. Мы знаем, что дочери от брака (а, b, с, d) принадлежат клану (а + 1, b + 1, а + с + d + 1), однако первые три координаты в обозначении брака обозначают не их клан, а их будущего мужа. Следовательно, нужно определить, к какому клану принадлежат мужчины, которые женятся на женщинах из клана (а + 1,b + 1,а + с + d +1)по формуле d + q.