106
Глава 6 Музыка сфер
За алгебру, этот дворец совершенных кристаллов,
За музыку, таинственную форму времени.
ЛЕВИ-СТРОСС: В первом томе моих «Мифологии» я писал, что музыка — «величайшая загадка всех человеческих наук». Сможете ли вы объяснить музыку при помощи теории групп?
ВЕЙЛЬ: Позвольте рассказать вам одну историю. Много лет назад мы с женой отправились на концерт. Во время концерта один из слушателей внезапно скончался от инфаркта. Музыканты остановились, дождались прибытия врачей, после чего концерт продолжился. В нашей ложе наблюдалось всеобщее оживление; люди не переставали шептаться. Я попросил их замолчать, но мои слова показались им воплощением абсолютной жестокости. «Боже правый, разве вы не видели, что произошло? Человек умер!» Мои соседи словно бы соревновались в том, кто сможет сильнее пристыдить меня. Я ответил им: «Есть способы умереть и похуже, чем под музыку Моцарта». Именно так хотел бы умереть и я. Представляете себе, какое это удовольствие — скончаться под звуки музыки, которая кажется непостижимой и лишь на несколько мгновений становится осязаемой? Ни теория групп, ни любая другая научная теория искусства никогда не смогут объяснить, почему кто-то может столь сильно любить музыку. Впрочем, эти теории позволяют прояснить некоторые формальные характеристики музыки, которые и делают ее прекрасной.
ЛЕВИ-СТРОСС: Математика — самая абстрактная из наук, подобно тому как музыка — самое абстрактное из искусств.
ВЕЙЛЬ: Вы уже знаете, что связь между математикой и музыкой почти столь же древняя, как и сама философия. По легенде, однажды Пифагор проходил мимо мастера, который выковывал жаровню, как вдруг его внимание привлекли гармоничные звуки ударов молота по раскаленному металлу. Измерив размеры инструментов, Пифагор понял, что звуки ударов двух молотов были созвучны лишь тогда, когда соотношение их длин выражалось малыми натуральными числами.
107
Если, к примеру, один молот был вдвое длиннее другого (2:1), то его звук был на октаву выше. Если же соотношение длин равнялось 3:2, то звуки различались на квинту.
В общем случае приятными на слух были все звуки, которым соответствовало соотношение вида (n + 1:n). Вернувшись домой, Пифагор продолжил опыты и убедился, что ключ к красоте музыки — в гармоничных соотношениях.
ЛЕВИ-СТРОСС: А красота есть истина. Именно тогда Пифагор начал постепенно склоняться к тому, что «все сущее есть число». Если к доказательству того, что музыка есть число, прибавить идею о Вселенной, состоящей из сфер, которые вращаются вокруг солнца под звуки божественной музыки, то станет очевидно: равновесие космоса описывается немногими математическими законами.
ВЕЙЛЬ: Этот идеальный порядок был разрушен с открытием иррациональных чисел. Гиппас из Метапонта обнаружил, что не все величины можно представить в виде отношения натуральных чисел, за что, по всей видимости, и был убит друзьями-пифагорейцами. Помню, как моя сестра Симона в ответ на длиннейшее письмо, которое я написал ей из Руанской тюрьмы в марте 1940 года (должно быть, оно немало взволновало ее), призналась, что эта история всегда казалась ей какой-то глупостью. По ее мнению, все произошло с точностью до наоборот: открыв, что квадратные корни, по сути абстракцию, можно использовать при измерении длин, Пифагор воскликнул: «Все сущее есть число!»
ЛЕВИ-СТРОСС: Это объясняет, почему люди на протяжении многих поколений не просто не утратили веры в музыку сфер, несмотря на открытие иррациональных чисел, но и сделали ее одной из основ западной мысли. Если бы влияние этой идеи не было бы столь сильным, Кеплер не привел бы столько оговорок и примечаний к своему закону, согласно которому планеты движутся вокруг Солнца не по круговым, а по эллиптическим орбитам. Как может Бог выбрать из двух возможных траекторий небесных тел менее гармоничную?
ВЕЙЛЬ: Прекраснее всего то, что даже сам Кеплер, который в некотором роде «заставил небеса замолчать», не был согласен с результатами своих трудов. Изложив их в книге «Новая астрономия» (1609), он продолжил работать над теорией о музыке сфер, на этот раз связав ее с Платоновыми телами.
Эта теория была опубликована спустя 10 лет в его книге «Гармония мира», полной эзотерических глупостей. На основе этой книги Пауль Хиндемит три века спустя создал одну из своих опер. Кеплера оправдывают разве что тяготы, которые пришлись на его долю: за короткое время умерли его сестра и единственный покровитель при дворе, сам он был отлучен от церкви, а все жители Леонберга начали преследование его матери, обвиненной в колдовстве.
ЛЕВИ-СТРОСС: Тогда давайте не будем следовать по его пути. Любой серьезный разговор о гармонии следует начинать с физики. Нельзя игнорировать тот факт, что музыка достигает наших ушей в виде волн, которые передаются по воздуху от источника колебаний. Как вам известно, частотой колебаний называется количество повторений событий (процессов) в единицу времени. Частота обычно измеряется в герцах (Гц) в честь немецкого физика Генриха Рудольфа Герца (1857—1894).
Чем выше частота звука, тем выше он кажется. Нотами до, ре, ми, фа, соль, ля и си обозначаются звуки определенных частот. К примеру, ноте ля соответствует звуковая волна частотой 440 Гц.
ВЕЙЛЬ: Да вы знаете о физике больше меня! Я хотел бы добавить, что ноты выбраны условно, что четко отражено в истории музыки. Нота ля в органе Баха имела частоту в 480 Гц, а Гендель примерно в 1740 году принимал ее частоту равной 422 Гц. В ту эпоху исполнители соревновались между собой, увеличивая частоты все больше и больше, чтоб звук казался звенящим. Наибольшие убытки от этой гонки несли скрипачи, которым ежедневно приходилось менять порванные струны, и, разумеется, певцы, постоянно испытывавшие проблемы с голосом. Если мне не изменяет память, именно жалобы певцов заставили французские власти закрепить стандартную частоту законодательно. Такой же указ приняли англичане, но — этого только не хватало! — указали другую частоту. Лишь в 1939 году на международной конференции была установлена привычная нам частота в 440 Гц. Кто знает, на какой частоте звучала музыка нашей юности, господин Леви-Стросс. Ранее предпринимались попытки установить частоту ноты ля равной 439 Гц, но... 439 — простое число, что стало причиной немалых затруднений[9].
109
ЛЕВИ-СТРОСС: Вы понимаете, что мы вновь и вновь возвращаемся к одной и той же идее? Важна не частота отдельной ноты, а ее соотношение с другими частотами. Если мы умножим частоты всех нот в партитуре на одно и то же число, то попрежнему сможем узнать мелодию: она будет звучать выше или ниже в зависимости от того, будет ли выбранный множитель больше или меньше единицы. Поэтому очень важно понять соотношение между частотами нот звукоряда. Позвольте напомнить, что помимо до, ре, ми, фа, соль, ля и си существует еще пять нот. Представьте, что вам нужно настроить пианино. Как вам известно, белым клавишам пианино соответствуют ноты до, ре, ми, фа, соль, ля и си, о которых я говорил. Кроме того, между белыми клавишами располагаются черные клавиши меньшего размера, которым соответствуют альтерированные ноты. При их описании используются диезы (#) и бемоли (b). Если мы добавим диез к одной из семи «белых» нот, то получим ноту, соответствующую клавише, которая расположена справа. Диезы позволяют переходить от белых клавиш к черным за исключением двух случаев: ми-диез и си-диез соответствуют не новым нотам, а уже известным нотам фа и до, так как в обоих случаях рядом с соответствующей клавишей будет располагаться не черная, а белая клавиша. Бемоли имеют противоположное значение: если мы добавим бемоль к «белой» ноте, то перейдем на одну клавишу влево. К примеру, ноты ре-бемоль и до-диез совпадают, а фа-бемоль — это нота ми, так как ближайшая к ноте фа клавиша слева вновь будет белой. Диезы или бемоли используются в зависимости от ситуации.
Клавиатура пианино.
Следовательно, настройка пианино заключается в сопоставлении всем этим нотам определенных частот. Как и в примере с нотой ля, в разные годы использовались разные модели. К примеру, пифагорейцы определяли музыкальный строй как последовательность квинт. Мы говорим, что нота отстоит от другой на одну квинту, если интервал между ними охватывает восемь клавиш пианино.
9
1 Как объяснял один из членов Британского института стандартов, «частота, используемая в трансляциях ВВС, определялась осциллятором, в котором использовался пьезоэлектрический кристалл с частотой колебаний в 1 миллион герц. Эта частота уменьшалась электронными средствами до 1000 Гц, затем умножалась на 11 и делилась на 25. Так получалась требуемая частота в 440 Гц. Так как число 439 является простым, его нельзя получить подобным способом».