Выбрать главу

110

Так, соль отстоит на одну квинту от до, так как между ними находятся клавиши до — до-диез — ре — ре-диез — ми — фа — фа-диез — соль. Аналогично, на одну квинту от соль отстоит нота ре. Название «квинта» указывает, что если мы смещаемся на восемь клавиш вправо, начиная с белой клавиши, то почти всегда отсчитываем пять белых клавиш, то есть пять нот. Но обратите внимание, что если мы начнем с ноты си, то получим фа-диез, которой соответствует черная клавиша. Это единственное исключение.

С помощью цепочки квинт можно определить все двенадцать нот музыкального строя.

ВЕЙЛЬ: Как я уже объяснял, господин Леви-Стросс, в пифагорейском строе ноты отстоят друг от друга на одну квинту, если их частоты относятся как 3 к 2. Для простоты предположим, что ноте до соответствует частота в 1 Гц. Так как соль отстоит на одну квинту от до, ее частота будет равна 1,5 Гц. Чтобы определить частоту ре, нужно будет вновь умножить частоту на 1,5. Получим 2,25 Гц — это означает, что нота ре выше, чем соль. На самом деле мы определили частоту верно, но для ноты другой октавы. Это частота ноты ре, которую мы получим, если продолжим последовательность соль-ля-си-до-ре. Необходимо понизить эту ноту на одну октаву, то есть разделить соответствующую частоту на 2. Следовательно, частота ноты ре равна 1,125 Гц. Аналогично можно вычислить частоты нот:

до → соль → ре → ля → ми → си → фа-диез.

Мы можем не только «подняться», но и «опуститься» на одну квинту, разделив частоту ноты на 1,5 Гц. Так как интервал между фа и до охватывает восемь клавиш, фа ниже до на одну квинту. Разделив ее частоту на 1,5 Гц и умножив на 2, чтобы скомпенсировать октаву, получим частоту в 1,333... Гц. Аналогично можно найти все остальные частоты:

соль-бемоль ← ре-бемоль ← ля-бемоль ← ми-бемоль ← си-бемоль ← фа ← до.

Чтобы определить современные частоты этих нот, достаточно вычислить коэффициент, при котором нота ля имеет частоту в 440 Гц, и умножить на него все остальные частоты. При использовании пифагорейского строя возникает одна проблема: обратите внимание, что мы вычислили частоты нот фа-диез и соль-бемоль, но на самом деле это одна и та же нота!

Следовательно, для точной настройки пианино с помощью пифагорейского строя эти две частоты должны совпадать. Нетрудно видеть, что это не так: если мы не будем учитывать смену октавы, то получим, что частота фа-диез определяется умножением на 1,5 шесть раз, а частота соль-бемоль — делением на эту же величину такое же число раз. Чтобы настройка была точной, частоты (3/2)6 Гц и (2/3)6 Гц должны быть разделены определенным числом октав.

111

Иными словами, отношение чисел (3/2)6 и (2/3)6 должно быть степенью двойки. Но это невозможно, так как 2 и 3 взаимно простые.

ЛЕВИ-СТРОСС: И поэтому появился равномерно темперированный строй?

ВЕЙЛЬ: Конечно, до него использовались и другие, но равномерно темперированный строй оказался наиболее успешным. Пианино настроено по равномерно темперированному строю, если отношение частот звуков, соответствующих двум соседним клавишам (вне зависимости от цвета), всегда одинаково.

Для математика это означает, что если мы обозначим последовательные частоты всех нот, начиная с любой ноты, к примеру до, до-диез, ре и так далее, через f1, f2, f3... то отношение f2 к f1 будет равно отношению f3 к f2, которое, в свою очередь, будет равняться отношению f4 к f3 и так далее. Если мы остановимся, к примеру, на f13, то получим следующие равенства:

f2 / f1 = f3 / f2 = ... = f13 / f12

ЛЕВИ-СТРОСС: Но если мы отсчитаем тринадцать клавиш, начиная с любой ноты, то вновь получим исходную ноту, но на октаву выше.

Октава на клавиатуре пианино.

ВЕЙЛЬ: Интервалу в одну октаву соответствует удвоение частоты, следовательно, отношение f13 к f1 равно 2. Обратите внимание, что мы также можем записать

112

отношение f13 к f1 через все промежуточные частоты так, что частоты, записанные в знаменателе и числителе, последовательно сократятся:

f13 / f1 = f13 / f12 · f12 / f11 · ... · f3 / f2 · f2 / f1

В равномерно темперированном строе все множители в приведенном выше произведении равны одной и той же величине (обозначим ее через d). Следовательно, отношение f13 к f1 равно 2, а также равно числу d, умноженному само на себя 12 раз.

Таким образом, получим уравнение d12 = 2. С помощью этого уравнения для любой данной частоты мы всегда можем вычислить частоту следующей ноты, умножив ее на корень 12-й степени из 2, который равен примерно 1,05946. К примеру, если частота ноты ля, как мы уже говорили, равна 440 Гц, то частота ноты си (на две клавиши «выше») будет равна примерно 494 Гц, а частота ноты соль (на две клавиши «ниже») — около 392 Гц.

до - 261,63

до-диез - 277,18

ре - 293,66

ре-диез - 311,13

ми - 329,63

фа - 349,23

фа-диез - 369,99

соль - 392

соль-диез - 415,30

ля - 440

ля-диез - 466,16

си - 493,88

Таблица частот для основных нот пианино.

ЛЕВИ-СТРОСС: Получается, частота ноты ля в 440 Гц выбрана по договоренности, а частоты всех остальных нот определяются однозначно.

ВЕЙЛЬ: Да, но при условии, что октава делится на 12 нот так, что соотношение между частотами соседних нот всегда будет неизменным. Таковы основные предпосылки равномерно темперированного строя. Впрочем, инструменты в оркестрах не всегда настраиваются точно так, как мы объяснили. Кроме того, музыкальный строй в современной музыке серьезно отличается, не говоря уже о музыке других культур, где используются совершенно иные системы. В индийской музыке, к примеру, равномерно темперированного строя нет.

ЛЕВИ-СТРОСС: Мне стыдно признаться, но я почти не интересовался так называемой этнографической музыкой. В моих экспедициях в Бразилии мне довелось услышать несколько удивительных мелодий, сегодня забытых.

113

Мне помнится, что в звуках флейт индейцев намбиквара я различил мелодию «Действа старцев — человечьих праотцов» из «Весны священной» Стравинского. В поездке я потратил много сил на то, чтобы как можно точнее записать услышанную музыку, насколько мне позволяли знания. По возвращении во Францию мой знакомый пианист помог мне улучшить партитуры и исполнил их. Так я смог выбрать те мелодии, что точнее всего осели в моей памяти. Знаете, что произошло потом? Редактор, ответственный за публикацию партитур, забыл их в такси. Возможно, именно из-за этого случая я вновь всерьез принялся за изучение музыки лишь 30 лет спустя, хотя редкие дни моей жизни не сопровождались произведениями Равеля, Дебюсси или Шопена.

Один из их этюдов особенно помог мне избавиться от тоски, охватившей меня в джунглях. Музыка стала путеводной нитью моих «Мифологик». Сперва я думал, что музыка поможет организовать сложный материал со множеством вариаций одной и той же темы. Все мы поступаем так же — даже вы, господин Вейль, в своих записках не обошли музыку стороной. Последняя глава — это балет-буфф с прелюдией, фугой и интермеццо. Впрочем, я вскоре обнаружил еще одну, более глубокую причину: когда просветительскую функцию древних мифов взяли на себя романы, музыка пришла на смену агонизирующей мифологии. Должно быть, именно эта мысль сыграла ключевую роль в создании тетралогии «Кольцо Нибелунгов» Вагнера.

ВЕЙЛЬ: Вернемся к теме нашего разговора. Позвольте напомнить: только что вы сами сказали, что если мы отсчитаем 13 клавиш от данной ноты, то получим прежнюю ноту, но на октаву выше. Октава делится на 12 частей. Благодаря этому принципу теория групп может сыграть интересную роль в изучении музыкальной гармонии. На самом деле мы используем одну и ту же ноту, например ля, для обозначения разных звуков, отстоящих друг от друга на одну октаву.