Выбрать главу

Если оба электрода заострены, то в разрядном промежутке образуется встречное движение ионов того и другого знака.

Коронный разряд потребляет ток небольшой величины. Если увеличивать напряжение, питающее коронный разряд, то между электродами начнут прыгать искры. Коронный разряд переходит в искровой или даже в дуговой.

Однако может быть и так: если электроды размещены близко друг от друга или если они не заострены, то никакими ухищрениями коронный разряд получить не удастся. При достаточно большом напряжении сразу начнется искровой разряд. Или дуговой, если источник тока обладает необходимой мощностью.

Знание законов возникновения и существования коронного разряда позволило создать аппараты и приборы, которые стали выполнять работу, недоступную другим видам электрических разрядов.

Плазма в переменном поле

До сих пор мы говорили о разрядах, питаемых током постоянным. Электроды при этих разрядах имеют вполне определенное назначение. Один из них — катод — служит «пристанью» для положительных зарядов, а второй — анод — для отрицательных. Существующее между ними электрическое поле действует на заряды в одном определенном направлении и с вполне определенной силой. «Узор» силовых линий в нем почти неизменен.

Ученые задались вопросом: что будет, если разрядную трубку питать не постоянным, а переменным током? Будет ли в этом случае возникать плазма, а если и будет, то чем она отличается от плазмы, полученной при постоянном токе?

Сейчас на все эти вопросы наукой получены ответы, хотя в целом высокочастотные разряды пока исследованы меньше, чем разряды на постоянном токе.

Когда трубка подключена к источнику переменного тока, электроды непрерывно меняются своими ролями. Если в данный момент один электрод, например, левый, является катодом, а второй, правый, — анодом, то тотчас с переменой направления тока на обратное левый электрод станет анодом, а правый — катодом. Такая смена «ролей» происходит с той частотой, с какой изменяется направление тока в цепи.

От частоты и зависит поведение плазмы в разряде.

Если трубка питается током низкой частоты, не превышающей, скажем, 500 герц, то разряд почти ничем не отличается от разряда на постоянном токе. Заряды при каждой вспышке разряда успевают перестроиться и на короткое время найти «положенные» места. Правда, наблюдая за разрядом, мы не увидим ни катодных, ни анодных его частей, потому что наш глаз воспринимает свечение как прямого, так и обратного разряда. А специальные приборы — стробоскопы — позволяют рассматривать разряд в течение каждого полупериода изменения тока.

Но картина резко меняется, если частота питающего тока достигает сотен тысяч и миллионов герц. Обычно этот ток вырабатывают специальные ламповые генераторы, или, иными словами, генераторы радиоволн.

Ток в разрядном промежутке настолько быстро изменяется по величине и направлению, что заряженные частицы, особенно ионы, не успевают занимать положенные места и лишь совершают колебания под действием быстропеременных электрических сил.

Такой высокочастотный разряд имеет свои особенности, свой «рельеф».

В тлеющем высокочастотном разряде, например, положительный столб занимает середину трубки. С обеих его сторон располагается по одному темному фарадееву пространству, а около каждого электрода можно увидеть катодные части разряда. Создается впечатление, что из двух обычных разрядов на постоянном токе получили один высокочастотный.

В тлеющем разряде на постоянном токе большую роль играли электроны, выбитые из катода. Здесь этого нет. Катод почти не участвует в ионизации, а образование ионов происходит за счет электронов, имеющихся в самой плазме.

С помощью специальной аппаратуры удалось получить такие же высокочастотные разряды, которые есть на счету у постоянного тока. Если взять обыкновенный алюминиевый или медный диск и под ним установить конический электрод — острие, то на этом острие при подведении высокочастотной энергии можно получить и искровой, и коронный, и дуговой разряды. Тип разряда будет зависеть от мощности источника тока, формы и расстояния между электродами и от частоты электромагнитных колебаний, вырабатываемых генератором.

Но радиоволны позволяют получить разряды, которые не доступны постоянному току. Поместив внутрь катушки индуктивности разрядную трубку с разреженным газом, можно заставить этот газ превратиться в плазму в виде кольца. Сделает это высокочастотное электромагнитное поле, пульсирующее вокруг витков катушки.