Во-первых, газовый лазер дает по частоте исключительно однородный сигнал. Отклонения от основной частоты составляют всего одну десятимиллиардную долю. Такое отклонение обычными оптическими методами невозможно даже измерить — приходится применять специальные, довольно сложные методы.
Во-вторых, газовый лазер не боится резких перепадов температур, чего нельзя сказать о рубиновом. Стержень рубинового лазера при работе очень сильно нагревается, приходится его охлаждать либо воздухом, либо жидким азотом. Но равномерно охладить кристалл не удается: внутренние слои стержня всегда оказываются горячее наружных. А раз так, кристалл может лопнуть, как лопается стакан, когда в него наливают кипяток. Газовый лазер таким недостатком не страдает.
Наконец, третье преимущество газовых лазеров состоит в том, что его можно делать любых размеров, для чего нужно брать необходимой длины разрядные трубки. Размеры кристаллического лазера определяются длиной стержня, который, как уже отмечалось, длиннее тридцати сантиметров не делают. Слишком длинный стержень труднее изготовить и труднее осуществить его световую накачку.
Газовые лазеры только начинают свою жизнь. Описание первого из них было опубликовано лишь в 1961 году. Некоторое время спустя удалось сделать лазер, который, как и рубиновый, создавал видимый, красный свет. В этом лазере, трубка которого тоже наполнялась смесью гелия с неоном, электрический разряд поддерживался постоянным напряжением около 1700 вольт. Полное давление газов в трубке достигало 0,7 миллиметра ртутного столба.
Появились также новые газовые лазеры, создающие инфракрасный свет. Так, разряд в смеси аргона с кислородом, осуществленный в одном из таких лазеров, создавал вынужденное излучение длиной волны около 8,5 микрона. Газовый лазер на смеси криптона и паров ртути излучал инфракрасный свет с длиной волны в 6 микрон. Все это говорит о том, что возможности, которыми обладает плазма как источник вынужденного излучения, только начинают раскрываться. Целый ряд специалистов-физиков, в том числе и профессор В. А. Фабрикант, считают, что в скором времени газовые лазеры среди квантовых усилителей света выйдут на первое место.
Преимущества их, упомянутые выше, позволяют на это надеяться.
Лазер — прибор, который уже сейчас нужен ученым, инженерам, химикам. Как для газовых, так и для кристаллических лазеров имеется непочатый край задач, которые другими средствами выполнить либо труднее, либо невозможно вообще. Какие это задачи, вы сейчас узнаете.
Детище квантовой механики — лазер стремятся взять на вооружение многие науки и отрасли техники. Ученые и инженеры разных специальностей спорят между собой, считая, что лазер с большим эффектом может быть использован именно в данной отрасли, а не в какой-либо другой. Однако возможности, заложенные в этом удивительном приборе, столь велики, что он оказывается полезным и связистам, и врачам, и металлургам, и исследователям космоса.
Связисты, например, считают, что лазеры станут основными устройствами для обеспечивания наземной, космической и даже подводной связи.
Уже испытан лазер в оптическом телефоне. Не провода, а острый луч переносил на большое расстояние человеческую речь.
Яркость луча при разговоре менялась, потом эти изменения вновь преобразовывались в звук. Правда, это были только первые опыты, но есть все основания надеяться, что появятся портативные устройства с лазерами, которые позволят наладить связь в горных и труднодоступных местах, через проливы и т. д.
Многие специалисты предсказывают настоящую революцию, которую совершат лазеры после их внедрения в радиотехнику.
На земном шаре в разных странах ежегодно вступают в строй десятки новых радиостанций, используемых для радиовещания, самолетовождения, радиотелефонной коммерческой связи. В эфире становится тесно. Если не считать радиоволн короче десяти метров, то в эфире могут работать без взаимных помех не более трех с половиной тысяч станций. Применение же лазера позволит передавать одновременно до десяти миллионов телефонных разговоров, программ вещания и телевидения.
Система лазерной связи будет в некоторой степени напоминать современные линии связи, применяемые в телевидении. Сейчас изображение передается при помощи радиоволн длиной в несколько метров. Эти ультракороткие волны, подобно свету, распространяются прямолинейно, поэтому для передачи их на далекие расстояния приходится строить башни радиорелейных линий, либо прокладывать кабель.