Выбрать главу

Электронный луч пробегает сначала вдоль верхней кромки фотокатода — по верхнему ряду фотоэлементов, затем луч перескакивает чуть ниже и пробегает слева направо вторую строчку. За второй строчкой он «прочитывает» третью, за третьей — четвертую и, таким образом, пробегает по всем строчкам фотокатода, «осматривая» все изображение, точку за точкой.

Иконоскопы, в которых луч прочеркивает на фотокатоде 625 строк за одну двадцать пятую долю секунды, дают очень высокое качество изображения и применяются только в СССР. В США лучшие телевизионные центры пользуются 525-строчной разверткой. Английские телевизионные станции применяют иконоскопы с разверткой на 405 строк.

Электронный луч — не что иное, как поток электронов. Следовательно, в тот момент, когда электронный луч падает на какой-либо фотоэлемент, убыль электронов, выбитых светом из этого фотоэлемента, мгновенно пополняется. Положительные заряды под действием электронного луча нейтрализуются. Электронный луч не «читает» изображение, он стирает, уничтожает его, как тряпка стирает мел с классной доски (рис. 105).

Рис. 105. Электронный луч, нейтрализуя положительный заряд фотоэлемента в мозаичном электроде, тем самым освобождает в металлической пластинке равновеликий отрицательный заряд, который стекает на сетку усилительной лампы.

В тот миг, когда электронный луч касается самого первого фотоэлемента в верхнем ряду и нейтрализует его положительный заряд, тотчас стайка электронов в металлической пластинке, которая была связана этим положительным зарядом, получает свободу. Она бросается к выходу из металлической пластинки. В проводнике возникает мгновенный ток — импульс, толчок. А сила этого импульса соответствует величине положительного заряда, нейтрализованного электронным лучом, и вместе с тем яркости изображений в самой левой верхней точке фотокатода.

Пробегая по всем фотоэлементам фотокатода и «стирая» один за другим положительные заряды на этих фотоэлементах, электронный луч освобождает соответствующие им по величине стайки электронов в металлической пластинке.

Эти стайки по очереди устремляются в проводник, создавая в нем цепочку мгновенных импульсов электрического тока. Стайки с большим числом электронов дают сильные импульсы. Если в стайке мало электронов — импульс слаб.

И что же получается? Электронный луч «стирает» с мозаичной поверхности фотокатода изображение, «нарисованное» положительными зарядами, и тем самым создает в проводнике цепочку сигналов — отрывистых импульсов электрического тока различной силы. Эти импульсы отводятся к усилителю, который обращает их в более мощные электрические сигналы. Изображение разлагается на ряд импульсов, следующих друг за другом, и «бежит» по проводам, как телеграфные знаки азбуки Морзе, Электронный луч в иконоскопе разрезает изображение на 625 строк-ленточек, превращает его в своеобразную телеграмму. Ее можно послать и по проводам и без проводов — по радио (рис. 106).

Рис. 106. Схема иконоскопа.

Электронный луч пробегает по всем точкам поверхности фотокатода за 1/25 долю секунды. Он делает ежесекундно по 25 кадров-снимков, почти не отличаясь в этом отношении от киносъемочного аппарата, который фотографирует на пленку 24 кадра в секунду. Такая частота обеспечивает передачу движущихся изображений, не уступающих по качеству кинофильму.

Так как электронный луч в советских телевизорах прочеркивает на фотокатоде 625 строк, а каждая строка содержит примерно по 832 элементика развертки, то, очевидно, общее число элементов в кадре составит 625 х 832 = 520 000, а полное число элементов в 25 кадрах, передаваемых за секунду, составляет 25 х 625 х 832 = 13 000 000 в секунду!

Уже из этого видно, какое огромное преимущество имеет электронная система телевидения перед механической, передававшей обычно только 100 х 100 х 10 = 100 000 элементов в секунду.

Объектив иконоскопа во время работы ни на один миг не закрывается. Он «смотрит, не мигая». Свет падает на фотокатод не отрывистыми порциями, как через дырочки в диске Нипкова, а сплошным потоком. Фотоэлементы находятся под непрерывным воздействием световых лучей и непрерывно накапливают заряды.

Электронный луч посещает каждый фотоэлемент через 1/25 долю секунды, а «гостит» у него всего лишь 1/13000000 долю секунды. За столь короткий промежуток времени он забирает у фотоэлемента весь накопленный им заряд.

Фотоэлемент в иконоскопе для накапливания зарядов имеет больше времени, чем для их высвобождения. И ясно, что видеосигналы, то есть сигналы, несущие изображения, в иконоскопе получаются много сильнее, чем в механических телевизорах, где фотоэлементы совсем не имеют времени для накапливания зарядов.