Выбрать главу

Микроскопическое исследование структуры материалов, полученных одновременно в условиях космического полета и на Земле (при прочих идентичных условиях), показывает, что кристаллы, выращенные в космосе, меньше, чем аналогичные кристаллы, полученные на Земле. Причина заключается в том, что в космосе миграция ионов в расплаве происходит лишь путем диффузии: именно такое влияние оказывает невесомость на процесс зародышеобразования и роста кристаллов из жидкой фазы. Влияние же невесомости на эвтектические растворы противоположно: кристаллы обеих фаз эвтектики больше, чем полученные на Земле.

Процесс затвердевания кристаллов в космосе подвержен влиянию микрогравитации. И хотя она была мала в данном эксперименте, но все же на внешней поверхности образца можно заметить следы воздействия радиальной составляющей микрогравитации, зарегистрированной в ходе эксперимента. Оказывается, что поле тяготения порядка 10–6g достаточно, чтобы повлиять на конфигурацию атомов в исследованной расплавленной системе, а также на процесс затвердевания.

Следующий эксперимент относился к медико-биологическим. С целью изучения кислородного режима в тканях человека, находящегося в условиях невесомости, был проведен советско-чехословацкий эксперимент «Кислород». Он выполнялся с помощью прибора «Оксиметр», разработанного специалистами ЧССР.

У человека и животных для сохранения и поддержания достаточного количества энергии непрерывно должны протекать процессы окисления, требующие постоянного притока кислорода. Длинный и сложный путь поступления кислорода в ткани организма определяется согласованной функцией легочного дыхания и кровообращения. И если динамика поступления кислорода в легкие и его перенос кровью изучены достаточно хорошо, то наука мало что знает о том, где и как происходит «стыковка» кислорода с тканями живого организма и как используется кислород тканевыми ферментами. Важнейшим показателем взаимодействия этих двух процессов является так называемый уровень напряжения в тканях организма.

В условиях невесомости наступает перераспределение крови из нижних участков тела в верхние, возникает переполнение кровью сосудов головы и верхней части тела. Это может сказаться на кислородном снабжении различных участков тела и изменении кислородного насыщения крови, а следовательно, и тканей организма. С помощью прибора «Оксиметр» с набором специальных датчиков, позволяющего вести исследования кислородного режима ткани, в эксперименте «Кислород» выяснялось, как изменяется уровень напряжения кислорода в тканях во время космического полета и изменяется ли в процессе полета доставка кислорода в ткани космонавта. Кроме того, изучался характер потребления кислорода тканями в полете.

Полученные в ходе эксперимента «Кислород» данные позволяют оценить интенсивность окислительных процессов в тканях космонавта в условиях невесомости, т. е. тех процессов, которые являются показателем интенсивности энергетического обмена в организме, что имеет существенное значение для оценки эффективности профилактических мероприятий, проводимых на борту пилотируемых аппаратов.

Следующий эксперимент из серии медико-биологических, «Опрос», был подготовлен специалистами СССР, ЧССР и ПНР. В ходе полета международного экипажа эксперимент проводился дважды: космонавты ответили на вопросы специального медико-психологического опросника о состоянии здоровья и воздействии внешней среды на психическую деятельность, о выполнении поставленных задач. Материалы данного эксперимента позволяют оценить изменения в субъективной сфере человека, адаптирующегося к необычным факторам окружающей среды, и будут использоваться при дальнейшем совершенствовании условий проживания и деятельности человека в замкнутом объеме.

Цель медико-биологического эксперимента «Теплообмен-2» — изучить охлаждающие свойства среды, в которой обитают экипажи космических кораблей и орбитальных станций. Проблема эта возникает в связи с тем, что в условиях невесомости процесс охлаждения тел претерпевает значительные изменения, вызванные «выпадением» из процесса теплообмена важнейшего компонента — теплоотдачи за счет естественной конвекции. Поэтому отсутствие естественной конвекции в условиях невесомости компенсируется созданием принудительных потоков воздуха с помощью вентиляторов. Однако такой метод не может считаться идеальным, поскольку теплоотдача при естественной конвекции является процессом саморегулируемым.

В условиях космического полета в обитаемых отсеках космических аппаратов, где состав и давление воздуха могут отличаться от земных параметров, а также в условиях интенсивной искусственной конвекции необходимо учитывать значительное количество различных характеристик среды, иными словами, в комплексе оценивать охлаждающие свойства воздушной среды. Чехословацкие специалисты для такой комплексной оценки предложили специальный прибор — электрический динамический кататермометр. Первые исследования в этом направлении были начаты с помощью биологического спутника «Космос-936», имевшего на своем борту автоматический кататермометр, также изготовленный в ЧССР. Результаты этого эксперимента подтвердили целесообразность расширенных исследований с участием космонавтов.

Основным элементом кататермометра является датчик, температура которого с помощью протекающего через него электрического тока доводится строго до 37 °C. При этом чем выше охлаждающие свойства среды, тем большая мощность электрического тока требуется для сохранения заданной температуры прибора. Замеряя потребляемую датчиком мощность, можно получить комплексный показатель охлаждающих свойств среды, учитывающий все ее основные характеристики. Прибор позволяет также производить объективную оценку теплового состояния космонавта прямым измерением температуры его кожи в шести точках тела.

В процессе эксперимента изучалась степень корреляции между показаниями обычного термометра и кататермометра, а также между объективным и субъективным тепловыми состояниями космонавта. При положительных результатах эксперимента, т. е. если подтвердилось бы предположение о лучшей степени корреляции тепловых ощущений и состояния космонавта с показаниями кататермометра, этот прибор можно было бы рекомендовать для использования в системе терморегулирования пилотируемых космических аппаратов вместо традиционных термометров.

Результаты эксперимента «Теплообмен-2» показали, что существует хорошее согласие между средними значениями температуры кожи, полученными различными приборами, которые в контрольных экспериментах на Земле и на 5-й день полета в невесомости были заключены в пределах 33–34 °C, а это свидетельствует о нормальном тепловом режиме. Однако достижение таких показателей по оптимальному тепловому режиму в условиях космического полета требует большего охлаждающего воздействия окружающей среды, чем на Земле. Можно констатировать, что данная аппаратура и разработанная методика в ходе полета оправдали себя и целесообразно продолжить эксперимент «Теплообмен-2» во время полета следующих международных экипажей.

Бóльшую часть четвертого дня полета А. А. Губарев и В. Ремек отвели эксперименту «Экстинкция», в ходе которого они наблюдали за изменением яркости звезд при их заходе за ночной горизонт Земли. Такие наблюдения проводились ранее и советскими и американскими космонавтами, которые обратили внимание на тот факт, что яркость звезд уже на расстоянии приблизительно 100 км от горизонта Земли постепенно слабеет… При этом звезды меняют свой цвет или мерцают, после чего они на мгновение вновь вспыхивают, чтобы, наконец, исчезнуть в плотных слоях атмосферы.