Молекула-носитель, используемая для визуализации эндокринных органов, обычно представляет собой вещество, которое является частью метаболической цепочки или имеет сродство со специфическими рецепторами желез внутренней секреции. Так, использование в качестве молекулы-носителя производных холестерола (например, 6-β-йодометил-19-норхолестерол), которые включаются в синтез стероидов, позволяет визуализировать корковое вещество надпочечников, а введение больному меченного радионуклидом аналога соматостатина (пентетреотида, октрео-тида) служит надежным методом визуализации большого числа эндокринных опухолей, имеющих соматостатиновые рецепторы.
Идеальный радиофармпрепарат должен характеризоваться не только преимущественным распространением в пределах обследуемого органа, но и иметь период полураспада, равный примерно 1/3 продолжительности радиоизотопного сканирования. Последний фактор позволяет ограничить лучевую нагрузку на пациента временными рамками проводимого исследования. К способам, уменьшающим лучевую нагрузку на пациента при применении сцинтиграфии, относятся: прием раствора Люголя с целью блокады щитовидной железы перед введением радиоизотопов йода при исследовании надпочечников, а также использование слабительных средств после окончания процедуры (в случае введения изотопов, выводящихся через желудочно-кишечный тракт).
Детектор, используемый в радионуклидных исследованиях, называется гамма-камерой, или сцинтилляционной камерой. Основным ее компонентом является сцинтилляционный кристалл, который наиболее часто выполняется из йодида калия и имеет диаметр около 60 см. Перед кристаллом (ближе к телу пациента) располагается свинцовое защитное устройство – коллиматор, в котором имеются отверстия, определяющие проекцию испускаемого излучения на кристалл.
Поглощение кристаллом гамма-фотонов сопровождается испусканием света, который передается к фотоумножителям и преобразовывается в электрические сигналы. Амплитуда этих сигналов пропорциональна количеству полученного света. Свет от каждого инсциллятора распространяется по всем фотоумножителям, но максимально интенсивен в том из них, который расположен непосредственно над сцинтиллятором. Одновременный анализ сигналов от всех фотоумножителей позволяет установить интенсивность и расположение каждой сцинтилляции и служит основой для реконструкции двухмерного изображения распространения радиофармпрепарата в тканях. Данное изображение может быть представлено на катодно-лучевой трубке или фотографической пленке. Современные гамма-камеры могут оцифровывать выходные электрические сигналы и создавать цифровые изображения. Создание цифровых изображений является необходимым для проведения динамических и томографических изображений.
Основными преимуществами радиоизотопного сканирования являются возможность изучения не только анатомических, но и функциональных особенностей исследуемого органа; одновременная оценка больших анатомических областей и тела человека в целом.
К недостаткам метода относятся низкое пространственное разрешение и лучевая нагрузка на пациента, а также трудности и ограничения, обусловленные особенностями работы с источниками радиоактивного излучения (необходимостью специальной лаборатории, вредным влиянием ионизирующего излучения на медицинский персонал и т. д.).
Наиболее широко в эндокринологии радионуклидная диагностика используется для выявления новообразований щитовидной и паращитовидных желез, надпочечников, островковоклеточных опухолей поджелудочной железы.
В последние годы появились методики, использующие компьютерные технологии радионуклидной визуализации:
1) однофотонная эмиссионная компьютерная томография (ОФЭКТ, SPECT);
2) позитронная эмиссионная томография (ПЭТ, PET).
ОФЭКТ основана на вращении вокруг тела обследуемого, которому предварительно вводится радиофармацевтический препарат, обычной гамма-камеры с фиксированием распределения радиоактивности при различных углах наклона, что после компьютерной обработки результатов позволяет реконструировать секционное изображение исследуемой области. Данный метод используется в основном у кардиологических и неврологических больных и пока не нашел применения в эндокринологии.
ПЭТ является более сложным томографическим методом, основанным на детекции испускаемых радионуклидами, введенными пациенту, позитронов. Позитроны и электроны имеют одинаковую массу, но различные заряды. По этой причине испускаемый радионуклидом позитрон сразу же реагирует на ближайший электрон. Происходящая при этом реакция (аннигиляция) сопровождается возникновением двух гамма-фотонов по 511 кэВ, которые распространяются в двух диаметрально противоположных направлениях. Учитывая большую энергию фотонов, для их регистрации используется не обычная гамма-камера, а специальные детекторы, расположенные коллинеарно.
ПЭТ позволяет провести количественную оценку концентрации радионуклидов, в связи с чем главным преимуществом данного метода является возможность изучения метаболических процессов в норме и при патологии. Основными позитрон-эмитирующими элементами, активно участвующими в метаболизме различных тканей, являются изотопы 11С, 13N, 15O. При необходимости позит-ронно-эмитирующими изотопами (ПЭИ) можно пометить другие важные метаболиты.
Основными недостатками ПЭТ являются высокая стоимость, обусловленная использованием для производства ПЭИ дорогих циклотронов, а также необходимость их размещения вблизи от лаборатории, что связано с быстрым распадом ПЭИ (периоды полураспада 15O и 18F составляют соответственно 2 и 110 мин). Эти факторы частично объясняют сравнительно редкое использование ПЭТ для клинических целей.
Значение метода ПЭТ для диагностики эндокринных заболеваний продолжает изучаться. В настоящее время показана диагностическая значимость ПЭТ лишь при локализации опухолей гипофиза и островковоклеточных новообразований поджелудочной железы.
ПЭТ выявляет не только локализацию опухолевого очага, но и метаболические процессы, происходящие в тканях. Метаболизм в опухоли (как и в метастатических очагах) отличается от метаболизма окружающих здоровых тканей, что и может быть выявлено с помощью ПЭТ. Для этого вводят некоторые вещества, более активно поглощаемые опухолевыми клетками (например, РТЮ), и по этому признаку судят о наличии метастаза в лимфоузле (или первичной опухоли).
Диагностическая чувствительность при опухолевом очаге более 1 см – 100 %.
Ядерно-магнитный резонанс. Используется редко из-за высокой стоимости исследования и недоступности для широкого применения.
При использовании ядерно-магнитного резонанса все доброкачественные образования дают интенсивность сигнала, равную или близкую к интенсивности, наблюдаемой от окружающих здоровых тканей. При злокачественных опухолях интенсивность сигнала низкая, их изображение плохо контурируется, неравномерно, с нечеткими краями. При опухолях менее 1 см диагностические возможности ядерно-магнитного резонанса пока значительно уступают магнитно-резонансной томографии.
МР-томография является одним из самых молодых и быстро развивающихся методов медицинской визуализации. С помощью этого метода можно создать изображение среза любой части тела человека в любой проекции.
Принцип метода теоретически сложен для понимания и в упрощенном виде может быть представлен следующим образом. Ядра атомов водорода (в дальнейшем – протоны) представляют собой по сути диполи маленьких размеров, которые при помещении внутрь сильного магнитного поля МР-томографа разворачиваются в направлении внешнего поля. Кроме того, магнитные моменты большей части протонов (параллельные протоны) начинают вращаться (прецессировать) вокруг оси внешнего магнитного поля. Частота этого вращения пропорциональна силе внешнего магнитного поля и называется резонансной частотой, или частотой Лар-мора. Магнитные моменты оставшихся протонов поворачиваются в другую сторону (антипараллельные протоны). В результате в тканях пациента создается суммарный магнитный момент, который ориентирован параллельно внешнему магнитному полю, величина которого определяется избытком параллельных протонов, а также количеством протонов в единице объема ткани, т. е. плотностью протонов. Магнитный момент огромного числа протонов достаточен для индукции электрического тока в принимающей катушке, расположенной вне пациента, однако необходимым условием такой индукции является изменение силы магнитного поля.