Такая относительно простая картина имеет место в случае плазмы, помещенной в электрическое поле. Ситуация сильно усложняется, если на эту плазму с электрическим полем «наложить» еще и магнитное поле.
Так, если без магнитного поля электроны и протоны двигались в противоположных направлениях и создавали электрический ток, то в присутствии магнитного поля при действии того же электрического поля электроны и протоны начнут перемещаться в одном и том же направлении. При равенстве их концентраций это движение не будет представлять собой электрического тока, поскольку суммарный перемещающийся электрический заряд равен нулю. Кроме того, в присутствии магнитного поля заряженные частицы перемещаются не вдоль (или против) направления электрического поля, а поперек этих полей, но в случае, если оба эти поля перпендикулярны друг другу.
В отсутствии магнитного поля мы говорили просто о проводимости плазмы (ионизованного газа). В присутствии же магнитного — мы должны говорить о нескольких типах проводимости: вдоль магнитного поля, поперек него и т. п. Электрически заряженным частицам отнюдь не одинаково легко двигаться в этих направлениях. Другими словами, среда, которая до наложения магнитного поля была изотропной, т. е. ее свойства не зависели от направления, после наложения становится анизотропной.
Вся проблема солнечно-земной физики связана с частично или полностью ионизованной плазмой, помещенной в магнитное поле (магнитное поле солнечных пятен, межпланетное магнитное поле, магнитное поле Земли). Причем на эту плазму действуют различные силы (силовые поля): электрическое поле, силы притяжения и силы, связанные с градиентами давления, градиентами и конфигурацией магнитного поля и т. п. Поэтому необходимо проанализировать, как же движутся заряженные частицы в таких ситуациях.
Рассмотрим возможные варианты.
1. Электрически заряженная частица движется вдоль магнитного поля. Легко показать, что в этом случае она не чувствует его наличие и движется так же, как и в его отсутствии. Это благоприятные условия для движения заряженных частиц. Поскольку силовые линии магнитного поля Земли почти вертикальны в высоких широтах в обоих полушариях, то это и создает благоприятные условия для осаждения (соскальзывания) заряженных частиц в атмосферу этих широт. В низких широтах и на экваторе частицам пришлось бы прорываться поперек силовых линий магнитного поля Земли, а это для частиц с энергиями, при которых они вызывают полярные сияния, непреодолимо трудно.
2. Заряженные частицы движутся поперек магнитного поля. В этом случае на частицу начинает действовать сила (рис. 10), которая норовит закрутить ее вокруг силовой линии магнитного поля (сила Лоренца). Как только траектория частицы закручивается, начинает действовать центробежная (направленная от центра кривизны) сила, прямо пропорциональная массе и квадрату скорости частиц (их произведению) и обратно пропорциональная радиусу кривизны траектории частицы. Движение будет установившимся, если эти силы уравновесятся. Из их равенства получим, что радиус окружности, по которой будет вращаться частица (так называемый радиус Лармора) равен
а угловая скорость ω и период вращения Т при этом равны
где е — величина электрического заряда частицы, m - масса частицы, Vn — скорость частицы поперек магнитного поля, В — величина магнитного поля.
Рис. 10. Направление силы Лоренца при движении частицы перпендикулярно магнитному полю
Рис. 11. Направление вращения положительно и отрицательно заряженных частиц вокруг силовой линии магнитного поля H
H1 — магнитное поле, создаваемое движущимся электрическим зарядом
Отсюда следует, что заряженные частицы, которые не движутся строго вдоль силовых линий магнитного поля Земли, будут вращаться вокруг силовых линий (рис. 11). В одном и том же магнитном поле одной и той же скорости движения радиус протонов почти в 2000 раз больше радиуса электронов, т. е. ровно во столько раз, во сколько раз отличаются их массы (1840 раз). Это весьма существенно для физики околоземного пространства. Круговая частота вращения для электронов и протонов также зависит от их массы, только уже не прямо, а обратно пропорционально. Частота вращения протонов (гирочастота) в 1840 раз меньше гирочастоты электронов. Гирочастоты входят в выражения для проводимостей, значит, и в условия распространения радиоволн. Очень важно для продвижения частицы, сумеет ли она большую часть времени вращаться вокруг силовой линии (тогда она оказывается как бы привязанной к данной силовой линии), или будет часто выталкиваться при соударениях с другими частицами от одной силовой линии к другой, не успев совершить даже одного полного оборота вокруг магнитной силовой линии. Другими словами, важно соотношение частоты вращения и частоты столкновений данной частицы с другими частицами. Если частота вращения (гирочастота) много больше частоты столкновений, то частицы плазмы «вморожены» в магнитное поле.