Выбрать главу

Во время положительных бухт регистрируются микропульсации особого типа, середина частотного спектра которых дрейфует в сторону больших частот. В это время в вечерние часы (где имеют место положительные бухты) вблизи горизонта через направление на полюс проходит движущийся на запад изгиб полярного сияния.

В утреннем секторе также наблюдается значительное усиление микропульсаций во время полярных сияний. Для всплесков рентгеновского излучения, как правило, характерно более резкое начало и быстрое затухание, чем микропульсации.

Рис. 52. Общая картина развития суббури в микропульсациях

В дневные часы (10—15 ч) микропульсации имеют квазисинусоидальный характер (как и модуляция всплесков рентгеновского излучения). Микропульсации рентгеновского излучения в полуденные часы ассоциируются с импульсными микропульсациями.

Во время взрывной фазы суббури в полярных сияниях к экватору от их овала отмечаются микропульсации типа КУП (колебания убывающего периода). Всплески Рi2 наблюдаются вдоль узкой области дальше к полюсу от расширяющейся выпуклости полярного сияния (рис. 52). Пульсации Рi2 наиболее четко фиксируются в средних широтах в позднем вечернем секторе.

В фазу восстановления суббури в полярном сиянии дальше к экватору от движущегося на запад изгиба полярного сияния наблюдаются колебания типа КУП. Область, в которой наблюдаются пульсации Рi1, сильно расширяется вплоть до полуденного сектора. Это расширение тесно связано с поглощением типа M, со всплесками рентгеновского излучения и ОНЧ-излучения типа D.

Спектры полярных сияний

Изучая спектры полярных сияний, мы получаем информацию о верхней атмосфере и о вторгающихся потоках заряженных частиц. Попытаемся схематически представить энергетические уровни и переходы электронов из одного уровня на другой, при которых излучаются кванты света, на примере самого простого атома — атома водорода (рис. 53).

Как известно, атом водорода состоит всего из двух частиц: протона, который является ядром, и вращающегося вокруг него одного электрона. Нейтрона в ядре водорода нет. Электрон, который вращается вокруг ядра, может иметь несколько значений энергий. Если на рис. 53 по вертикальной оси отсчитать энергию, то разрешенные энергетические уровни можно изобразить отрезками прямых (1—5).

Как было сказано выше, электрон в атоме всегда стремится уменьшить свою собственную энергию — перейти на более низкий энергетический уровень (на рис. это показано стрелками). Каждый такой переход сопровождается излучением света с определенной частотой (т. е. определенной энергией). Переходы электрона на один и тот же уровень с разных уровней с большей энергией составляют серию излучаемых квантов; частота излучаемого света в данной серии может быть рассчитана по довольно простым формулам. Эти серии имеют свои названия (в честь их открывателей). Так, первая серия в атоме водорода называется серией Лаймана и обозначается буквой L с индексами α, β, γ, вторая — серией Бальмера — буквой Н с аналогичными индексами и т. д.

Рис. 53. Схема энергетических уровней атомов водорода

Показанная на рис. 53 схема энергетических уровней очень упрощена даже для случая одного орбитального электрона. Если атом поместить в сильное магнитное поле, то энергетические уровни расщепляются. Это можно определить по тому, какой частоты свет, излучаемый атомом. Если он излучен на какой-либо определенной частоте, то в сильном магнитном поле появится излучение па частотах, которые меньше и больше ее.

Энергетические уровни атомных электронов обладают еще одним свойством: вероятность перехода электронов на разные уровни различна. Некоторые уровни, соответствующие таким значениям энергии, которые электроны принимают очень неохотно, с малой вероятностью, называются запрещенными.

Электроны, как уже говорилось, стремятся приблизиться по-возможности ближе к ядру, но при этом им приходится отдавать лишнюю энергию в виде излучения. В обратной ситуации электрон поглощает квант (порцию) света. Тогда его энергия увеличивается, и он вынужден переселиться на более удаленную от ядра орбиту. Атом с таким электроном называется возбужденным. В этом состоянии атом долго находиться не может: как правило, через 1*10-8 с этот электрон излучает лишнюю порцию света, возвращаясь при этом в свое основное, нормальное состояние, т. е. на прежний свой энергетический уровень.