Рэлей, исследуя зеленую линию спектра полярного сияния, определил измерительную единицу для количественного выражения этих измерений. Позднее, в 1956 г., эта единица интенсивности свечения атмосферы была названа Рэлеем. Интенсивность свечения в один Рэлей (R) соответствует излучению миллиона квантов, которые испускаются в одну секунду в столбе атмосферы сечением в 1 см2. Единица в 1000 раз большая названа килорэлей (kR).
На геомагнитной широте около 65° в 80% случаев наблюдаются сияния с интенсивностью кислородной линии 5577 Å от 0,75 до 11,5 kR (только 0,4% времени интенсивность превосходит 100 kR). Интенсивность красной кислородной линии 6300 Å составляет от 5 до 100 kR. Свечение азотной линии 3914 Å с интенсивностью по шкале яркости более 3 баллов (когда яркость сравнима с яркостью кучевых облаков, освещенных луной) соответствует 100 kR.
Интенсивность сияний (а также их интегральная яркость) может изменяться примерно в 10 тыс. раз. Все сияния разделены на 4 балла согласно международной шкале яркости. Интенсивность по мере увеличения балла на единицу увеличивается в 10 раз. Нулевой балл, введенный наряду с 4 баллами, означает, что полярные сияния визуально не фиксируются и могут быть обнаружены только инструментально. Интенсивность этого сияния составляет 0,1 kR.
Представляет большой научный интерес отношение интенсивностей излучения отдельных линий, особенно зеленой линии кислорода 5577 Å, и первой отрицательной системы полос N2+.
Измерение абсолютных величин интенсивности излучения в отдельных линиях все еще встречает определенные трудности. Так, для абсолютных измерений необходимо проводить калибровку приборов, что ограничивает точность измерений. Кроме того, прибор регистрирует весь свет, который излучается в пределах объезда пространства, охватываемого полем зрения прибора вдоль луча зрения. По этой причине привязать измерение интенсивности к определенным точкам полярного сияния трудно или даже невозможно. Этими и другими трудностями можно объяснить тот факт, что измерения интенсивности слабых излучений все еще малочисленны. Эти измерения чаще всего только указывают на сам факт существования излучений. Более того, даже измерения более сильных излучений в значительной степени ненадежны для определения абсолютных величин интенсивностей.
С Земли с помощью спектрографов с высоким разрешением, а также обычными фотографическими методами можно проводить измерение характеристик излучения в области спектра с длинами волн от 3300 до 9000 Å.
Измерение интенсивности излучения различных линий полярных сияний имеет еще один аспект. Дело в том, что существует тесная связь между интенсивностью свечения в полосах первой отрицательной системы N2+ (наиболее сильными являются линии 3914 и 4278 Å) и количеством электронов, создающихся при ионизации атмосферы тем пучком электронов, который вызывает это излучение. Для изучения распределения электронов в полярной ионосфере эта информация весьма важна. Основная информация об электронной концентрации получается с помощью радиометодов, главными из которых являются зондирование ионосферы с поверхности Земли (или с самолета) и с помощью ионозондов, установленных на ИСЗ. В первом случае получаем информацию о распределении концентрации электронов «внутренней» ионосферы, т. е. ионосферы ниже главного максимума ионизации в области на высоте 300—400 км. Во втором (при зондировании со спутника) — ионозонд дает информацию о внешней ионосфере, т. е. выше этого максимума. В периоды, когда происходит интенсивное вторжение заряженных частиц, особенно больших энергий, способных достигать высот нижней ионосферы (100 км и ниже), метод вертикального зондирования с Земли становится неприменимым. Радиоволны не возвращаются из ионосферы и, таким образом, не приносят информацию о распределении электронов: они поглощаются в нижней ионосфере. Зато препятствий для измерения интенсивности излучения линий 3914 и 4278 Å нет. По этим интенсивностям можно рассчитать количество электронов, образованных пучком вторгающихся электронов. В частности, по этой причине излучение в линиях 3914 и 4278 Å измерялось очень часто и поэтому известно весьма подробно. Важно отметить, что распределения по высоте интенсивностей излучения линии кислорода 5577 Å и указанных выше полос первой отрицательной системы N2+ очень похожи между собой.
В процессе наблюдений удалось обнаружить линии излучения для всех возбужденных метастабильных состояний основных конфигураций нейтральных и однократно ионизованных атомов азота и кислорода. Чаще всего отмечаются излучения в результате таких переходов атомарного кислорода: 'D—'S (5577 Å) и 3Р—'D (6300 и 6364 Å) и атомарного азота 2D—2Р (10 395 и 10 404 Å) и 4S—2Р (3466 Å). Эти линии являются запрещенными. Они представляют интерес потому, что некоторые из них (особенно 5577, 6300 и 6364 Å) имеют умеренную интенсивность и легко измеряются. Кроме того, по интенсивности излучения в этих линиях можно определить характеристики заряженных частиц, которые вызывают эти излучения. Для метастабильных атомов весьма важны столкновения, при которых они переходят в основное состояние (дезактивирующее). В результате этих столкновений энергия метастабильных атомов переносится к другим атомам и молекулам.