Посмотрим теперь, как в этой новой системе решается вопрос о природе континуума, столь волновавший Канта в докритический период. В «Критике чистого разума» этому вопросу уделяется тоже большое внимание, но способ его рассмотрения существенно меняется. Подлинным бытием, как теперь полагает Кант, обладают лишь вещи в себе, которые суть простые, неделимые единства, лишенные протяжения. От Лейбницевых монад эти единства однако отличаются тем, что, во-первых, они непознаваемы, а, во-вторых, из них недопустимо «составлять» материальные тела, т. е. рассматривать сложное как «агрегат» простого.
Что же касается мира явлений, протяженного в пространстве и длящегося во времени, то он непрерывен, т. е. бесконечно делим. Именно жесткое различение вещей в себе и явлении является основой кантовского решения проблемы континуума: непрерывность пространственно-временного, природного мира не противоречит «дискретности» мира сверхприродного. В «Метафизических началах естествознания» (1786) Кант пишет: «Сколь далеко… простирается математическая делимость пространства, наполненного той или иной материей, столь же далеко простирается и возможное физическое деление субстанции, его наполняющей. Но математическая делимость бесконечна, следовательно, и физическая, т. е. всякая материя до бесконечности делима, и притом на части, из которых каждая в свою очередь есть материальная субстанция»[82]. Последнее замечание имеет целью подчеркнуть, что в материи нет «последних неделимых» элементов, нет лейбницевых «физических монад», бесконечное множество которых составляет как бы «бытийный» фундамент непрерывности феноменального мира (назовем его условно «становлением»). По Канту, всякая часть материи, как и пространства, делима до бесконечности.
Здесь Кант в понимании континуума возвращается к Аристотелю и следовавшему за ним Декарту, хотя чисто философское обоснование такой трактовки непрерывности у Канта иное, чем у этих его предшественников. Перед Кантом стояла альтернатива. Если принять материю за субстанцию, и притом не тождественную пространству (с пространством материю отождествлял Декарт), то тезис о бесконечной делимости материи требовал бы допустить, что она состоит из актуально бесконечного множества «последних единиц» — путь, которым пошел Лейбниц, отвергнув физический атомизм во имя принципа бесконечной делимости, но положив в основу природы атомизм метафизический — «монадизм».
Но если считать, как Аристотель, что материя — это лишь возможность, потенциальность, то нет надобности в самой материи искать актуально бесконечного множества далее не делимых «элементов» в качестве условия ее бесконечной делимости. Кант пришел к выводу, что материя есть только явление и благодаря этому возвратился к принципу непрерывности в его аристотелевско-евдоксовом варианте. «О явлениях, деление которых можно продолжить до бесконечности, можно лишь сказать, что частей явления столько, сколько их будет дано нами, пока мы будем в состоянии продолжать деление.
Ведь части, как относящиеся к существованию явлений, существуют лишь в мыслях, т. е. в самом делении»[83]. Иначе говоря, если материя не есть вещь в себе, то нет надобности допускать, как это делал Лейбниц, актуальную бесконечность «частей» для обоснования потенциальной бесконечности, т. е. бесконечной делимости пространства, времени и материи. Таким образом, именно феноменалистское истолкование материи позволяет Канту справиться с парадоксами континуума.
Интересно отметить, что возвращение к потенциальной бесконечности при обосновании дифференциального исчисления происходит и в математике второй половины XVIII в., хотя полностью элиминировать понятие актуально бесконечно малого и создать теорию пределов, опирающуюся на методологические принципы метода исчерпывания древних, удалось лишь позднее, усилиями К.Ф. Гаусса, О. Коши и особенно К. Вейерштрасса. Противоречивость понятия бесконечно малого, как мы уже отмечали, была очевидна с самого появления этого понятия; не случайно Ньютон создавал теорию «первых и последних отношений», стремясь избежать употребления «бесконечно малых». Это стремление еще более усилилось после критики инфинитезимального исчисления, осуществленной Дж. Беркли. Не удивительно, что Даламбер в своих статьях «Дифференциал» (1754), «Флюксия» (1756), «Бесконечно малое» (1759) и «Предел» (1765), помещенных в знаменитой «Энциклопедии, или Словаре наук, искусств и ремесел», в качестве обоснования анализа предложил теорию пределов. При этом он опирался на Ньютонов принцип «первых и последних отношений». Дальнейшие шаги в этом направлении предпринял Лагранж. В 1784 г. по инициативе Лагранжа Берлинская Академия наук назначила приз за лучшее решение проблемы бесконечного в математике. Объявление об условиях конкурса гласило: