Выбрать главу

Образование NO

Пришлось включать в рассмотрение и реакции с участием заряженных частиц, что привело к современной схеме процессов, включающей как N, N(2D) и N0, так и положительные ионы. Эта схема изображена на рисунке. Мы видим, что все интересующие нас компоненты в этой схеме взаимосвязаны. Чтобы найти нужные нам концентрации отдельных составляющих, приходится решать довольно громоздкую систему уравнений, вытекающую из указанной схемы. Задача сложная, но вполне разрешимая.

Соответствующие расчеты были сделаны, и они показали, что теория на данном этапе хорошо согласуется с результатами эксперимента Мейра. Более того, выше 140 км удалось измерить концентрации возбужденных атомов N(2D) оптическим методом. И по этому параметру теория и эксперимент оказались в хорошем согласии. Остается еще третья интересующая нас в этой главе компонента - атомный азот N в основном состоянии. Но по нему, как мы увидим далее, пока нет надежных экспериментальных данных, значит, и говорить о контроле теории экспериментом пока нельзя.

Каково же на сегодняшний день положение с теорией и измерениями окиси азота?

Фотохимию N0 мы уже обсудили. Пока это лучшее, что есть. Но уже видны некоторые подводные камни. Например, роль реакции

Формула 45

передающей возбуждение от атомов азота к атомам кислорода.

Насколько она эффективна? Ведь в описанной выше схеме считается, что все образующиеся атомы N(2D) превращаются в N0 по реакции (44). Но если реакция с О идет достаточно быстро, часть атомов N(2D) будет "утекать" из канала образования N0 и наша схема опять нарушится - будет вновь не хватать мощности источника образования окиси азота. Вопрос, таким образом, упирается в эффективность реакции (45), но эта эффективность, увы, пока неизвестна.

Что касается экспериментальных данных, то здесь появилось много интересного. Американским ученым со спутника удалось провести многочисленные и, видимо, надежные оптические измерения распределения окиси азота с высотой выше области Е.

Одним из важных выводов, полученных в результате измерений, является вывод о том, что существуют небольшие, но хорошо выраженные широтные вариации концентрации N0. В полярной области [NO] оказались систематически в 2 - 3 раза выше, чем в средних широтах. Вывод этот существен по двум причинам. Во-первых, он - свидетельство пространственной изменчивости NO. В совокупности с косвенными оценками, о которых мы поговорим ниже, это заставляет рассматривать окись азота как очень динамичную компоненту. Во-вторых, он ставит под сомнение результат, полученный несколько лет назад. На ракетах во время полярного сияния были измерены огромные концентрации N0 в области Е ([NO] оказалась примерно равна [О2], что в 105 раз больше, чем в средних широтах!). Предполагалось, что столь высокие [NO] обязаны своим происхождением очень эффективному образованию атомов N(2D) вторгающимися потоками частиц. Но частицы (и в первую очередь электроны) вторгаются в полярную ионосферу довольно регулярно. И тем не менее измерения на спутнике ничего сравнимого с ракетным экспериментом не обнаружили. Пришелся ли этот эксперимент на уникальные условия или он был ошибочным? Пока нельзя сказать окончательно, но с точки зрения наших сегодняшних знаний вероятнее второе.

Итак, выше области Е мы теперь имеем целый набор измерений количества окиси азота. А в самой области Е и ниже? Про прямые измерения NO оптическим методом на этих высотах мы уже говорили. Но в последнее время появилось много косвенных оценок [NO] в Е- и D-области. И эти оценки заставили по-новому взглянуть на проблему экспериментальных определений [NO] в целом. Выше мы видели, как активно окись азота вмешивается в вопросы ионизации, рекомбинации и образования ионов-связок. А раз так - любые вариации количества NO должны находить отражение в поведении различных ионосферных параметров. Простейший пример: отношение двух основных молекулярных ионов NO+ и О2+ на высотах 85 - 120 км. Оно прямо зависит от концентрации окиси азота, которая превращает O2+ в NO+:

Формула 46