Измерение концентрации N
А обычные атомы азота? Оптическими методами определить их концентрацию очень трудно. Значит, остается основной метод изучения состава верхней атмосферы - масс-спектрометрический. Именно с ним, вернее, с полученными этим методом результатами и связаны сейчас основные проблемы атомного азота выше 100 км.
Масс-спектрометр регистрирует частицы в соответствии с их отношением массы к заряду. (В случае измерения ионного состава ионы поступают прямо из окружающей атмосферы, так сказать, в готовом виде. Когда исследуется нейтральный состав газа, включается специальный ионный источник, превращающий путем ионизации пучком электронов входящие нейтральные частицы в заряженные, которые и поступают в анализатор прибора.)
За условную единицу принято отношение массы к заряду у атома водорода, поэтому соответствующие массовые числа составляют 1 для Н, 2 для Н2, 14 для N, 16 для О, 28 для N2, 30 для NO, 32 для O2 и т. д.
С помощью масс-спектрометра в принципе можно проводить как абсолютные измерения (т. е. прямо получать количество, скажем, атомов О или молекул N2 в кубическом сантиметре), так и относительные. В последнем случае получают соотношение между концентрациями различных компонент, например тех же О и N2.
Обычно масс-спектрометр выполняет именно относительные измерения.
Все было бы хорошо и никаких трудностей с измерением концентраций N не возникало бы, если бы пик атомного азота на масс-спектрограммах образовывался... только из атомного азота. Выясняется, однако, что это не так. Как показали калибровки в лаборатории на спектрах контрольной смеси, в которой заведомо нет атомов N, а есть лишь N2, тем не менее наблюдается пик с массовым числом 14. Откуда он берется? Видимо, это побочный продукт воздействия электронов ионного источника. В самом приборе происходит разрушение части молекул N2 и образование атомов N, которые не имеют ничего общего с реальным существованием атомного азота в атмосфере.
Атомный азот
Лабораторные калибровки дали величины I14/I28 порядка 1 - 3%. Несколько паразитных частиц с М=14 на 100 молекул азота. А на полетных спектрах это отношение, как правило, оказывалось несколько выше (в среднем от 3 до 5 - 6%). Казалось бы, отнести разницу за счет атмосферных
атомов азота - и вот вам готовое отношение [N]/[N2] в атмосфере.
Однако у многих исследователей появились сомнения. Во-первых, несколько процентов от концентрации N2 - это довольно много для атомного азота, особенно в нижней части измерений, в области Е. Скажем, на высоте 130 км 1% от концентрации N2 составляет 1010 см-3. Это много больше, чем дают даже грубые теоретические модели распределения [N]. Во-вторых, отношение I14\I28 обнаружило сильные вариации от эксперимента к эксперименту, то поднимаясь до высоких значений, превосходящих 10%, то опускаясь до лабораторных величин. Как-либо разумно объяснить эти вариации, связать их с изменением состояния атмосферы, не удавалось.
И вот мнения специалистов по масс-спектрометрии разделились. Большинство предпочло воздержаться от анализа данных по I14\I28 и определения по ним количества атмосферного атомного азота.
Однако некоторые исследователи склонны приписывать полученную разницу между лабораторными и наблюдаемыми значениями I14\I28 целиком вкладу атмосферного атомного азота. Естественно, в этом случае получаются высокие [N]/[N2], порядка нескольких процентов, или, что то же (поскольку мы здесь можем считать концентрации N2 известными с хорошей точностью), высокие концентрации атомов азота, на 2, а то и на 3 порядка большие, чем дает современная фотохимическая теория. Можно ли подправить теорию, чтобы получить более близкие к эксперименту значения? Оказывается, нет. Существует принципиальная трудность, связанная реакцией (42). В этой реакции происходит одновременная гибель атомов N и молекул N0. Константа скорости реакции известна из лабораторных измерений и равна 2×10-11 см3×с-1. Помножив концентрацию N на концентрацию NO и на эту величину, мы, естественно, получим скорость гибели N и NО. В условиях равновесия эта скорость должна компенсироваться скоростями образования соответственно атомов N и молекул NО.
Взяв концентрации окиси азота, описанные выше, и концентрации N, измеренные в масс-спектрометрических экспериментах, мы получим очень высокие скорости гибели N и NO. Так, на высотах 150 - 160 км величина [N][NO]α2 будет составлять 104 - 105 см-3×с-1. Это очень много. Никакие известные механизмы (включая и реакцию с возбужденным азотом N (2D)) не способны обеспечить столь высокую скорость образования окиси азота на этой высоте. Аналогичная картина наблюдается и на других высотах, где значения [N] высоки. Чтобы показать, что полученные высокие значения [N][NO]α2 невозможно принять с точки зрения скорости образования N, нам необходимо подробнее рассмотреть вопрос, откуда берется атомный азот.