Чем же замечательны возбужденные частицы, чем они отличаются от своих собратьев - атомов и молекул в основном (невозбужденном) состоянии?
Прежде всего своей активностью. Как правило, возбужденные специи более активны, чем невозбужденные, они охотнее вступают в различные химические реакции. Мы уже говорили в этой главе о проблеме окиси азота. Основным путем образования N0 испокон веков считалась реакция атомного азота с молекулами О2
Образование NO
Это уже знакомая нам реакция (41). Однако эффективность (константа скорости) этой реакции для обычных N и O2 очень мала - около 10-16 см3×с-1 при атмосферных температурах. Такая эффективность совершенно недостаточна, чтобы объяснить существующие в атмосфере концентрации окиси азота. Гораздо эффективнее идет эта реакция, если молекула кислорода возбуждена в состояние 1Δg (см. реакцию (43)). В этом случае константа скорости составляет 3×10-15 см3×с-1. Однако и это, как мы видели в первом параграфе этой главы, не решает проблемы N0. А если в возбужденном состоянии 2D находится атом азота, то константа скорости реакции оказывается еще выше - около 10-11 см3×с-1. Теперь уже эффективность процесса достаточно велика и реакция между N(2D) и О2 (см. реакцию (44)) решает проблему источника окиси азота.
Пример с окисью азота является прекрасной иллюстрацией того, как сильно влияет на эффективность реакции участие в ней возбужденных частиц (константа скорости возросла примерно на 5 порядков величины!) и как с помощью таких частиц решается одна из крупных проблем аэрономии.
Значит, химическая активность - первая важная особенность возбужденных атомов и молекул. Ну а вторая?
Вторая - наличие у них дополнительной энергии. За счет этой энергии возбужденные атомы и молекулы могут участвовать в таких реакциях, где участие их невозбужденных собратьев просто невозможно по энергетическим соображениям. Прекрасным примером является ионизация все тех же молекул в возбужденном состоянии О2(1Δg) солнечным излучением с длиной волны 1118-1027 Å. Квант указанного излучения несет энергию около 11 эВ и не может ионизовать нормальную молекулу О2, потенциал ионизации которой равен 12 эВ. Но в возбужденной молекуле О2(1Δg) уже запасено около 1 эВ энергии. Вместе с энергией кванта излучения это получается уже 12 эВ, т. е. столько, сколько необходимо для ионизации. Молекула О2(1Δg) может быть ионизована указанным излучением, которое не способно ничего поделать с молекулами кислорода в основном состоянии.
Третья важная особенность возбужденных специй - это их оптические "паспорта". Ведь раз эти специи непрерывно излучают, мы, наблюдая за поведением соответствующих эмиссий (линий, полос и т. д.), можем судить и о поведении (т. е. об изменении во времени, а иногда - и в пространстве) количества тех или иных возбужденных атомов и молекул в верхней атмосфере. И дело здесь не только в том, что мы узнаем, как изменилось количество самих возбужденных частиц. Ведь изменения, происходящие с этими частицами, отражают происходящие в верхней атмосфере процессы. И сплошь и рядом это могут быть очень важные процессы, постоянный контроль за которыми весьма важен для решения аэрономических проблем.
Хорошим примером такого рода является красная линия атомного кислорода 6300 Å, которую излучают атомы О, возбужденные в состояние 1D. Изучая пути образования и гибели этих атомов, выяснили, что на высотах ионосферной области F2 они образуются в результате основных ионосферных реакций (ионно-молекулярные реакции и диссоциативная рекомбинация), а потому тесно связаны с состоянием ионосферы в этой области. Таким образом, наблюдая за свечением линии 6300 Å даже с Земли, можно судить о поведении весьма важной области ионосферы. Сейчас уже думают о мониторинге (т. е. постоянном наблюдении в разных местах Земли) красной линии, чтобы контролировать поведение ионосферного слоя F2, что очень важно для диагностики и прогнозирования распространения коротких радиоволн.
Имеются и другие идеи, как использовать атмосферные эмиссии для контроля процессов, в которых участвуют возбужденные частицы. Так, по поведению молекул O2(1Δg), за которыми удается следить, наблюдая инфракрасные полосы в области 1,27 мк, можно судить о ночном количестве озона на высотах около 80 км, где прямые измерения Оз ночью весьма затруднены. А распределение с высотой ряда эмиссий, порождаемых возбужденными атомами и молекулами кислорода, дает сведения о вертикальном профиле атомного кислорода на высотах 80 - 110 км, в области, где хуже всего проводить его прямые измерения.