Выбрать главу

Проследим, как ведет себя сурьма в химических реакциях с другими элементами, например с кислородом, и каков характер ее соединений.

При нагревании на воздухе сурьма легко превращается в окисел Sb2O3 — твердое вещество белого цвета, почти не растворимое в воде. В литературе это вещество часто называют сурьмянистым ангидридом, но это неправильно. Ведь ангидрид является кислотообразующим окислом, а у Sb(OH)3, гидрата Sb2O3, основные свойства явно преобладают над кислотными. Свойства низшего окисла сурьмы говорят о том, что сурьма — металл. Но высший окисел сурьмы Sb2O3 — это действительно ангидрид с четко выраженными кислотными свойствами. Значит, сурьма все-таки неметалл?

Есть еще третий окисел — Sb2O4. В нем один атом сурьмы трех-, а другой пятивалентен, и этот окисел самый устойчивый. Во взаимодействии ее с прочими элементами — та же двойственность, и вопрос, металл сурьма или неметалл, остается открытым. Почему же тогда во всех справочниках она фигурирует среди металлов? Главным образом ради классификации: надо же ее куда-то девать, а внешне она больше похожа на металл…

Как получают сурьму

Сурьма — сравнительно редкий элемент, в земной коре ее имеется не более 4∙10-5%. Несмотря на это, в природе существует свыше 100 минералов, в состав которых входит элемент № 51. Самый распространенный минерал сурьмы (и имеющий наибольшее промышленное значение) — сурьмяный блеск, или стибнит, Sb2S3.

Сурьмяные руды резко отличаются друг от друга по содержанию в них металла — от I до 60%. Получать металлическую сурьму непосредственно из руд, в которых меньше 10% Sb, невыгодно. Поэтому бедные руды обязательно обогащают — концентрат содержит уже 30–50% сурьмы и его-то перерабатывают в элементную сурьму. Делают это пирометаллурическнм или гидрометаллургическим методами. В первом случае все превращения происходят в расплаве под действием высокой температуры, во втором — в водных растворах соединений сурьмы и других элементов.

Так выглядит катодная сурьма 

Тот факт, что сурьма была известна еще в глубокой древности, объясняется легкостью получения этого металла из Sb2S3 с помощью нагрева. При прокаливании на воздухе это соединение превращается в трехокись, которая легко взаимодействует с углем. В результате выделяется металлическая сурьма, правда, основательно загрязненная примесями, присутствующими в руде.

Сейчас сурьму выплавляют в отражательных или электрических печах. Для восстановления ее из сульфидов используют чугунную или стальную стружку — у железа большее сродство к сере, чем у сурьмы. При этом сера соединяется с железом, а сурьма восстанавливается до элементного состояния.

Значительные количества сурьмы получают и гидрометаллургическими методами, которые позволяют использовать более бедное сырье и, кроме того, дают возможность извлекать из сурьмяных руд примеси ценных металлов.

Сущность этих методов заключается в обработке руды или концентрата каким-либо растворителем, чтобы перевести сурьму в раствор, а затем извлечь электролизом. Однако перевод сурьмы в раствор дело не такое простое: большинство природных соединений сурьмы в воде почти не растворяется.

Только после многочисленных опытов, ставившихся в разных странах, был подобран нужный растворитель. Им оказался водный раствор сернистого натрия (120 г/л) и едкого натра (30 г/л).

Но и в «гидрометаллургической» сурьме довольно много примесей, в основном железа, меди, серы, мышьяка. А потребителям, например металлургии, нужна сурьма 99,5%-ной чистоты. Поэтому черновую сурьму, полученную любым методом, подвергают огневому рафинированию. Ее заново плавят, добавляя в печь вещества, реагирующие с примесями. Серу «связывают» железом, мышьяк — содой или поташом, железо удаляют с помощью точно рассчитанной добавки сернистой сурьмы. Примеси переходят в шлак, а рафинированную сурьму разливают в чугунные изложницы.

В соответствии с традициями мирового рынка слитки сурьмы высших марок должны иметь ярко выраженную «звездчатую» поверхность. Ее получают при плавке со «звездчатым» шлаком, состоящим из антимонатов натрия (mSb2O3∙nNa2O). Этот шлак образуется при реакции соединений сурьмы и натрия, добавленных в шихту. Он не только влияет на структуру поверхности, но и предохраняет металл от окисления.