Выбрать главу

Из этих двух терминов термин «векторная скорость» используется физиками намного чаще, поскольку это — более широкий и более удобный термин. Например, мы могли бы определять силу как «то, что изменяет скорость тела или направление его движения, или и то и другое» или как «то, что изменяет вектор скорости тела» — это более краткая, но сохраняющая первоначальное значение фраза.

Так как изменение в скорости — это ускорение, мы могли бы также определять силу как «то, что прикладывает ускорение к телу, причем ускорение и сила приложены в одном том же направлении».

Масса

Первый закон Ньютона объясняет концепцию силы, но, чтобы позволить нам измерить величину силы, необходимо еще что-то. Если мы определяем силу как то, что порождает ускорение, казалось бы логичным измерить размер силы размером ускорения, которое ее вызывает. Это имеет смысл, когда мы ограничиваем себя рассмотрением одного специфического тела, например баскетбольного мяча. Если мы толкаем баскетбольный мяч по земле с постоянной силой, он перемещается все быстрее и после десяти секунд такого перемещения развивает скорость, например, 2 м/с. Его ускорение — 2 м/с поделить на 10 секунд — 0,2 м/с2. Но если вы опять начнете с нуля и будете толкать мяч не так сильно, то после десяти секунд баскетбольный мяч будет перемешаться со скоростью только 1 м/с и поэтому подвергнется ускорению, равному только лишь 0,1 м/с2. Так как в первом случае ускорение в два раза больше, чем во втором, кажется справедливым предположить, что и сила в первом случае была в два раза больше, чем во втором.

Но если бы вы попробовали применить те же самые силы к твердому пушечному ядру вместо баскетбольного мяча, то обнаружили бы, что пушечное ядро не будет подвержено таким же ускорениям, как указаны выше. Потребуется применить гораздо большую силу для того, чтобы вообще заставить пушечное ядро двигаться.

Опять же, когда баскетбольный мяч катится со скоростью 2 м/с, вы можете достаточно легко его остановить. Изменение скорости с 2 м/с до 0 м/с требует приложения силы, и вы вполне можете создать достаточную силу, чтобы остановить баскетбольный мяч. Или вы можете пнуть баскетбольный мяч во время его движения и таким образом заставить его изменить направление движения. Пушечное же ядро, перемещающееся со скоростью в 2 м/с, однако, может быть остановлено только приложением очень большого усилия, и, если пнуть его во время движения, это изменит его направление весьма незначительно (а вы отобьете ногу).

Пушечное ядро, другими словами, ведет себя так, как если бы оно обладало большим количеством инерции, чем баскетбольный мяч, и поэтому требует соответственно большего количества силы для получения заданного ускорения. Ньютон использовал термин «масса», чтобы указать величину инерции, которой обладает тело. Таким образом, его второй закон движения гласит: «Ускорение, полученное в результате действия какой-либо силы, действующей на тело, — прямо пропорционально величине этой силы и обратно пропорционально массе тела».

Как я уже объяснил, когда x считают прямо пропорциональным к y, это означает, что x = ky. С другой стороны, если мы говорим, что х является обратно пропорциональным к другой величине, например z, то мы подразумеваем, что любое увеличение z приводит к уменьшению х на соответствующую величину, и наоборот. Таким образом, если z увеличена в три раза, х получается равным 1/3; если z увеличена в одиннадцать раз, x получается равным 1/11, и так далее. Математически это понятие обратной пропорции наиболее просто может быть выражено как x ~ 1/z, тогда, когда z равно 3, х равна 1/3, когда z удваивается до 6, x в два раза уменьшается и становится равным 1/6 и так далее. Мы можем заменить пропорциональность на равенство, умножив какую-либо часть на константу таким образом, чтобы величина x была обратно пропорциональна z, то есть x = ky/z. Но если x является одновременно прямо пропорциональной к y и обратно пропорциональной к z, то это означает, что x = ky/z.

Учитывая это, давайте обозначим ускорение как a, величину силы как f, а массу тела как m. Тогда второй закон движения Ньютона приобретает такой вид:

a = kf/m (Уравнение 3.1)

Давайте теперь рассмотрим единицы, в которых будем измерять каждую из величин, начиная с массы, так как мы пока еще не упоминали ее в этой книге. Вы можете подумать, что, если я говорю, что пушечное ядро более массивно, чем баскетбольный мяч, я подразумеваю, что оно и более тяжелое. На самом деле я так не делаю. «Массивный» — не то же самое, что «тяжелый», и «масса» — не то же самое, что «вес», как я объясню вам чуть позже в этой книге. Однако между этими двумя концепциями имеется некоторое подобие, и их часто путают. В повседневной жизни, по мере того как тела становятся более массивными, они также становятся и более тяжелыми, кроме того, физики тоже внесли свой «элемент беспорядка», используя для измерения массы тела единицы, которые нефизики обычно считают единицами веса.