Конечно, если имеется сила, притягивающая Луну к Земле, это может быть та же хорошо известная сила, которая притягивает яблоко к земле. Однако, если это было бы так и Луна испытывала бы постоянное ускорение, направленное к Земле при наличии постоянной силы, почему же она не падает на Землю, как делает яблоко?
Чтобы понять, почему этого не происходит, мы должны разложить движение Луны на две составляющие движения, находящиеся под прямым углом друг к другу. Одна из составляющих направлена как стрелка, указывающая на Землю, по радиусу круговой орбиты Луны. Она представляет собой движение в ответ на силу, притягивающую Луну к Земле. Другая составляющая направлена под прямым углом к первой и, таким образом, представляет собой касательную к кругу орбиты Луны. И Луна бы двигалась по касательному движению, если бы не имелось никакой силы, притягивающей ее к Земле. Фактическое же движение лежит между этими двумя составляющими. Луна, другими словами, всегда падает на Землю, но в то же самое время также «отступает в сторону».
В некотором смысле это «отступление» означает, что поверхность Земли отходит от Луны с такой же скоростью, как Луна приближается к ней, падая. Таким образом, расстояние между Землей и Луной остается неизменным. Чтобы было более понятно, представим себе снаряд, выстреленный горизонтально с вершины горы на земле, и развивающий все большую и большую скорость. Чем больше скорость, тем дальше перемещается снаряд, прежде чем удариться о землю. Чем дальше он перемещается, тем дальше от него сферическая земная поверхность, таким образом увеличивается перемещение снаряда. Ну и наконец, если снаряд выстрелен вперед с достаточной скоростью, высота его падения становится равной величине кривизны земной поверхности, и снаряд «остается на орбите». Именно так на орбиту Земли выводят искусственные спутники, и именно поэтому Луна не падает на Землю, а остается на орбите.
При рассмотрении движения Луны мы должны учитывать только ту составляющую движения, которая направлена к Земле. Естественно возникает вопрос: не является ли этот компонент результатом действия той же силы, которая притягивает к земле яблоко? Ну что же, давайте обратимся к яблоку и посмотрим, как интерпретировать силу взаимодействия между ним и землей в свете законов движения.
Во-первых, все яблоки падают с одним и тем же ускорением, независимо от того, насколько они массивны. Но если одно яблоко имеет массу вдвое большую, чем второе яблоко, и все же падает с тем же самым ускорением, то на первое яблоко должна воздействовать вдвое большая сила (согласно второму закону движения). Сила, притягивающая яблоко к земле (часто ее называют весом яблока), должна быть пропорциональна массе яблока.
Но согласно третьему закону движения всякий раз, когда одно тело прикладывает силу к другому, второе прикладывает равную и противоположную силу к первому. Это означает, что, если Земля привлекает яблоко с некоторой нисходящей силой, яблоко привлекает Землю с равной восходящей силой.
Это кажется странным. Как крошечное яблоко может проявлять силу, равную той, что проявлена огромной Землей? Если бы это происходило, то можно было бы ожидать, что яблоко притянет к себе другие объекты, как это делает Земля, но этого, конечно, не происходит. Логично было бы объяснить это предположением, что сила притяжения между яблоком и землей зависит не только от массы яблока, но также и от массы Земли. Она не может зависеть от суммы масс, поскольку, когда мы удвоим массу яблока, суммарная масса яблока и Земли остается примерно прежней, в то время как сила притяжения удваивается. Очевидно, что она должна зависеть не от суммы масс, а от произведения масс.
Если мы умножаем массы, маленькая масса оказывает столь же сильный эффект на конечное произведение, как и большая. Таким образом, результатом умножения малого количества a на огромное количество b является произведение ab. Если теперь мы удвоим a, оно становится равным 2a. Если мы умножаем его на b, произведение становится равным 2ab. Таким образом, при удвоении одного из двух множителей в умножении маленький множитель может удвоить произведение. И удвоение массы яблока удваивает размер силы между яблоком и Землей.
Что же касается притяжения яблоком какого-либо другого объекта обычного размера, оно существует, но столь мало заметно из-за того, что произведение масс этих объектов составляет ничтожно малую часть от произведения массы этого объекта и массы Земли. Сила притяжения между двумя объектами обычного размера соответственно меньшая, и, несмотря на то что такая сила существует, она настолько бесконечно мала, что никак не может обнаружить себя при нормальном состоянии вещей.