Выбрать главу

Лучший современный расчет дает нам значение G, равное 0,0000000000667 м3/кг∙с2, конечно же достаточно крошечное значение. Надо отдать должное большому таланту Кавендиша-экспериментатора, потому что в еще в первом своем измерении он получил значение очень близкое к этому.

Предположим, теперь мы преобразуем уравнение 4.1 следующим образом:

m’ = Fd2/Gm. (Уравнение 4.3)

И попытаемся еще раз определить массу Земли (m’). Мы уже имеем, в системе МКС, значение для F, равное 0,98, значение d, равное 6 370 000 и значение (m) равное 0,1. Если мы теперь добавим значение G равное 0,0000000000667, то вычислить массу Земли m — простая арифметика. Как вы можете увидеть, т равно (0,98)∙(6 370 000)∙(6 370 000), деленное на (0,0000000000667)∙(0,1), или, примерно, 6 000 000 000 000 000 000 000 000 килограммов.

Физики обычно выражают такие большие числа как степени числа 10. Таким образом, 1 000 000 обычно записывают в виде 106, что выражает произведение шестидесяти. Экспонента (для чисел больше 1) показывает число нулей в исходном числе. Из этого следует, что 6 500 000 равно 6,5∙106. Отрицательные экспоненты выражают числа меньше чем 1, то есть 106 равно 1/106 или 1/1000000, или 0,000001. То есть 0,00000235 равно 2,35∙10–6.

Используя такую экспоненциальную систему обозначений, можно записать значение G = 6,67∙10-11 м3/кг∙с2, а массу Земли как т = 6∙1024 кг. (В системе СГС значение G = 6,67∙10-8 см3/г∙с2, а масса Земли равна 6∙1027 г.)

Глава 5.

ВЕС

Форма Земли

Определяя значение G, Кавендиш в действительности определил массу Земли. По этой причине о Кавендише часто говорят как о «том, кто взвесил Землю», но на самом деле он сделал совсем не это.

В обычном языке слова «вес» и «масса» часто имеют одно и то же значение, а о теле часто говорят как о «тяжелом» или «массивном»; даже физики иногда попадают в эту западню. Однако рассмотрим, что такое вес. Вес тела — это сила, с которой тело притягивается к земле. Повторяю, вес — это сила, и единицы измерения он имеет как у силы!

Простой путь измерения веса объекта состоит в том, чтобы подвесить его на кольцевую пружину. В соответствии с законом Гука сила, с которой тело притягивается к Земле, будет растягивать пружину; величина же растяжения (или деформации) пропорциональна силе растяжения (или нагрузке). Именно по этому принципу устроены для измерения веса приборы такого типа — пружинные весы.

Масса тела, с другой стороны, является количеством инерции, которой оно обладает. Согласно второму закону Ньютона, m = f/a, то есть это — сила, разделенная на ускорение. Вес, который является силой, должен в соответствии с тем же самым законом быть массой, умноженной на ускорение. В случае веса, который является силой воздействия поля тяготения Земли на тело, рассматриваемое ускорение, естественно, является тем, что произведено полем тяготения земли.

Вес тела (w), другими словами, равен массе (m) этого тела, умноженной на ускорение свободного падения (g), возникшее благодаря земной гравитации (то есть — силе притяжения Земли):

w = mg. (Уравнение 5.1)

Так как значение g при обычных условиях примерно постоянно, вес, можно сказать, прямо пропорционален массе тела. Сказать, что A является в 3,65 раза столь же массивным, как В, эквивалентно тому, чтобы сказать, что при обычных условиях А является в 3,65 раза более тяжелым, чем В. Поскольку эти два утверждения обычно эквивалентны, существует сильное искушение признать их синонимами, и в этом и скрывается источник путаницы между массой и весом.

Эта путаница еще ухудшается тем, что для них используются общие единицы измерения. Тело массой в один килограмм, как обычно считают, имеет и вес в один килограмм[19]. В системе МКС, однако, единицы измерения m — килограммы (кг), а единицы измерения g — м/с2. Так как вес равен массе, умноженной на ускорение свободного падения (mg), то единицы измерения веса — кг-м/с2, или Н (ньютоны). Таким образом, при нормальных условиях один килограмм массы проявляет 9,8 Н силы.

вернуться

19

Единицы измерения веса (фунт, унция и т. д.) использовались задолго до того, как Ньютон разработал свою концепцию массы. Единицы измерения веса были заимствованы и применены к массе, что стало «ошибкой, не подлежащей исправлению».