Выбрать главу

Конечно же существует вероятность того, что галактика и антигалактика могут приблизиться друг к другу. Тогда в результате взаимной аннигиляции выделится количество энергии, во много раз превосходящее выделяемое в обычных условиях. Существуют галактики, испускающие необычно большое количество энергии, что в очередной раз поднимает вопрос существования антивещества в головах физиков-теоретиков.

В 1962 году были обнаружены странные объекты, получившие название «квазизвезды», или квазары. Они испускают излучение, мощность которого равняется излучению 100 галактик, вместе взятых, в то время как их размеры не превосходят 1–10 световых лет в диаметре (диаметр галактики же в среднем составляет 100 000 световых лет).

Однако при попытке объяснить это явление никто еще не использовал термин «антивещество». К антивеществу прибегнут лишь в самом крайнем случае, так как такое объяснение очень трудно проверить.

Глава 14.

ПРОЧИЕ ЧАСТИЦЫ

Нейтрино

В гл. 11 мы говорили о том, что в ходе ядерных реакций масса переходит в энергию согласно формуле Эйнштейна e = тс2. Это соответствие соблюдается и при полной аннигиляции частицы ее античастицей, и при образовании пары «частица — античастица» из энергии.

Несмотря на то что в большинстве случаев соотношение e = mc2 выполняется полностью, в случае с радиоактивными излучениями существует одно исключение.

Альфа-излучение закону сохранения энергии подчиняется. Когда материнский атом самопроизвольно распадется на дочернее ядро и альфа-частицу, сумма образовавшихся продуктов отличается от массы исходного ядра. Это различие выражается в кинетической энергии быстрой альфа-частицы. Так как в результате распада ядра одного и того же элемента образуются одни и те же продукты, и разница в массе, и кинетическая энергия должны быть одинаковыми. Другими словами, пучок альфа-частиц должен быть моноэнергетическим, каковым он в данном случае и является.

У некоторых веществ испускаемый пучок альфа-частиц можно условно разделить на две и более группы, каждая из которых будет моноэнергетической, но уровень ее энергии будет отличаться от уровня энергии другой. Объясняется это тем, что материнское ядро может существовать на различных энергетических уровнях. В возбужденном состоянии ядро обладает несколько большей энергией, чем в обычном, и образующиеся при распаде такого ядра альфа-частицы обладают большей кинетической энергией. Каждому энергетическому уровню материнского ядра соответствует определенная группа моноэнергетических альфа-частиц, но соотношение массы и энергии остается неизменным (то есть соблюдается закон сохранения энергии).

Предполагалась, что все вышесказанное справедливо и для элементов, ядра которых распадаются на дочернее ядро и бета-частицу. Казалось вполне закономерным, что такие бета-частицы также образуют моноэнергетический пучок или в крайнем случае небольшую группу моноэнергетических лучей.

Однако в 1900 году Беккерель обнаружил, что разброс значений уровня кинетической энергии у излучаемых бета-частиц гораздо шире. В 1914 году Джеймс Чедвик доказал существование «непрерывного спектра бета-излучения».

Из потери массы была высчитана максимальная энергия бета-частицы, однако лишь у некоторых частиц уровень равнялся максимальному значению. (Ни у одной частицы уровень энергий не превышал максимальный, так как энергия, к сожалению, не образуется из ничего.)

Уровень энергии у бета-частиц был самым разнообразным (в пределах максимального). Некоторые вообще практически не обладали кинетической энергией. Более того, значительная часть энергии вообще куда-то исчезла, и в течение всех 1920-х годов ученые так и не могли обнаружить куда.