Исчезновение энергии так же невозможно, как и ее образование. Хотя некоторые физики, включая Нильса Бора, и готовы были признать закон сохранения энергии недействительным для субатомных частиц, остальные отчаянно искали какое-то другое объяснение.
В 1931 году Вольфганг Паули предложил свое объяснение. Он предположил, что во время образования бета-частицы образуется еще одна бета-частица, которая как раз и несет «недостающую» энергию первой бета-частицы.
В этом случае эта гипотетическая частица должна обладать определенными свойствами. При излучении бета-частицы сохраняется электрический заряд, то есть общий заряд образовавшихся частиц такой же, как и заряд исходных частиц. Соответственно частица Паули должна быть незаряженной. В этом был определенный смысл, так как если частица была бы заряженной, то во время своего движения она бы ионизировала окружающие атомы, то есть ее можно было бы обнаружить, например, в камере Вильсона. Но обнаружить ее не удалось.
Кроме того, обшей заряд предложенной Паули частицы был очень небольшим — равным недостающему количеству кинетической энергии электрона. От энергии частицы зависит ее масса, а значит, у частицы со столь низкой энергией и масса должна быть небольшой. Вскоре выяснилось, что масса новой частицы должна составлять менее 1% от массы электрона, то есть она уж точно являлась безмассовой.
Энрико Ферми, сразу заинтересовавшийся теорией Паули, хотел было дать название новой частице — «нейтрон», но к тому времени Чедвик уже обнаружил тяжелую незаряженную частицу, которую мы называем нейтроном. Тогда Ферми добавил к понравившемуся названию итальянский уменьшительно-ласкательный суффикс, и получился «нейтрино» («маленький и нейтральный»), и название прижилось.
Физики прозвали незаряженную безмассовую частицу «призраком», так как ее невозможно было обнаружить ни по заряду, ни по массе. Ее существование было бы очень сложно принять на веру, пусть даже и ради спасения закона сохранения энергии, если бы нейтрино не спасли еще три закона сохранения.
Это стало очевидным после применения нейтрино к теории распада нейтронов. Нейтрон имеет период полураспада 12 мин и распадается на протон и электрон, причем кинетическая энергия вылетающего электрона может принимать различные значения. Тогда, по теории Паули, нейтрон распадается на три частицы: протон, электрон и нейтрино.
Разница между распадом до трех частиц вместо двух очень важна с связи с законом сохранения количества движения (см. ч. I). Если нейтрон в состоянии покоя распадается лишь на две частицы, они должны разлететься в противоположном друг от друга направлении по прямой траектории. Только в этом случае закон сохранения количества движения будет соблюден.
Если же этот нейтрон распадется на три частицы, то две из них вылетят по одну сторону от проведенной через центр ядра воображаемой прямой линии и их общий импульс будет компенсирован импульсом третьей частицы, вылетающей в противоположную сторону.
В результате проведенных исследований распада нейтрона выяснилось, что образующиеся протон и электрон вылетают по одну сторону от проведенной через центр ядра воображаемой прямой линии и что для сохранения количества движения просто необходимо существование третьей частицы, вылетающей по другую сторону от этой линии.
Как только удалось понять сущность спина частиц, стало ясно, что нейтрино очень удобно использовать и в связи с законом сохранения углового момента (см. ч. I). Спин нейтрона, протона и электрона может принимать значение +½ либо –½. Предположим, что нейтрон распадется только на протон и электрон. Общий спин протона и электрона может быть равен +1, 0 или -1 (+½ и +½, –½ + ½ или –½ + –½). При любом раскладе общий их спин отличается от спина нейтрона (+½ или –½), то есть угловой момент не сохраняется.
Теперь предположим, что спин нейтрино может быть равен +½ или –½. Тогда общий спин трех частиц может быть равен +½ или –½, например +½, +½ и –½, то есть угловой момент сохраняется.
И наконец, третий, более тонкий закон сохранения. В предыдущей главе я говорил о законе сохранения барионного числа. Барионное число протона и нейтрона равно +1, а антипротона и антинейтрона –1. При распаде нейтрона барионное число сохраняется, так как из нейтрона (барионное число +1) образуется протон (барионное число +1).
А существует ли подобный закон для электронов, где число электрона будет равняться +1, а позитрона –1? Если мы рассматриваем только эти две частицы, то не будет. Например, в результате распада нейтрона образуется в том числе и один электрон, хотя в начале распада никаких электронов (или позитронов) нет.