Рассмотрим семейство электронов, включающее не только электроны и позитроны, но и нейтрино. Чтобы все сошлось, нам нужны еще и антинейтрино. Отличие антинейтрино от нейтрино заключается в направлении магнитного поля вращающейся частицы, как и в случае с нейтроном и антинейтроном (см. гл. 13). Электронное число нейтрино будет равно +1, а антинейтрино –1.
Теперь рассмотрим распад нейтрона с точки зрения вышесказанного. Электронное число нейтрона равно 0, так как он не является членом электронного семейства. Нейтрон распадается на протон (электронное число 0) и электрон (электронное число +1). Если добавить сюда и еще антинейтрино (электронное число –1) вместо нейтрино, то действует закон сохранения электронного числа (электронное число равно 0 до и после распада нейтрона).
Так же как и нейтрино, антинейтрино спасает законы сохранения энергии, количества движения и углового момента, а кроме того, добавляет еще один — закон сохранения электронного числа. Обозначив нейтрино как ν, а антинейтрино как ν–, можем записать следующую формулу распада нейтрона:
С другой стороны, продуктом преобразования протона в нейтрон с испусканием позитрона (см. гл. 13) является частица с электронным числом –1. Для компенсации необходимо добавить еще и нейтрино (электронное число — 1). Запишем это:
И действительно, допуская образование в ходе ядерных реакций нейтрино и антинейтрино, мы можем сохранить соблюдение четырех законов сохранения: энергии, количества движения, углового момента и электронного числа. Ради получения этой «компенсации в четырехкратном размере» придется признать существование нейтрино и антинейтрино независимо от того, можно их обнаружить или нельзя.
Взаимодействие нейтрино
Несмотря на косвенное доказательство существования нейтрино и антинейтрино через законы сохранения, физики решили успокоиться только после обнаружения этих частиц. Для того чтобы обнаружить нейтрино или антинейтрино, необходимо, чтобы эти частицы вступили в распознаваемое взаимодействие с другими частицами.
Например, в процессе распада нейтрона до протона испускается антинейтрон. А может ли происходить обратный процесс, то есть превращение протона в нейтрон в результате поглощения антинейтрино? Тогда в процессе поглощения антинейтрино могли бы остаться какие-либо распознаваемые следы.
К сожалению, вероятность поглощения антинейтрино очень мала. Период полураспада нейтрона до протона равен 12 мин.
Это означает, что существует 50%-ная вероятность испускания нейтроном протона за эти 12 мин. Отсюда следует, что, если антинейтрино находится в непосредственной близости от протона в течение 12 мин, существует 50%-ная вероятность поглощения его протоном.
Однако антинейтрино не может находиться в непосредственной близости от протона не то что 12 мин, а и одной миллионной доли секунды. Безмассовые частицы, такие как нейтрино, антинейтрино, фотон и гравитон, сразу же после образования начинают движение со скоростью света и продолжают двигаться с этой скоростью до самого момента поглощения. Это значит, что антинейтрино будет находиться в непосредственной близости от протона всего лишь в течение 10–28 с, а в этом случае вероятность взаимодействия между этими частицами крайне мала. Нейтрино и антинейтрино настолько малы, что для их поглощения необходимо твердое вещество толщиной в среднем 3500 световых лет.
Ситуация с фотоном диаметрально противоположна. Фотон также перемещается со скоростью света, однако, когда ситуация с энергией требует испускания атомов фотона, испускание происходит уже спустя 10–8. Соответственно для успешного поглощения фотона частица должна находиться в непосредственной близости от атома в течение всего лишь 10–8. Кроме того, длина волны фотона гораздо больше, чем нейтрино (если рассматривать обе частицы в виде волн), поэтому фотону для преодоления объекта необходимо больше времени, чем нейтрино, несмотря на то что обе частицы движутся с одинаковой скоростью.
Гамма-лучи поглощаются свинцовой плитой толщиной всего лишь 3 м. Видимый свет, длина волны которого еще больше, чем у гамма-лучей, настолько медленно проникает сквозь один атом, что поглощается веществом толщиной всего в несколько атомов.