Предположим, например, что вы стоите на абсолютно гладком поворотном столе, который был приведен во вращение; вы держите ваши руки раздвинутыми на ширину плеч, в каждой руке у вас — тяжелый груз.
Ось вращения проходит через центр вашего тела от головы к пальцам ног, а масса ваших раскинутых рук находится дальше от этой оси, чем вся остальная часть тела. Грузы, которые вы держите в обеих руках, находятся еще дальше. Следовательно, ваши руки и грузы, которые они держат, оказывающие очень большое влияние на значение r, вносят большую составляющую в значение mr2 и создают момент инерции, намного больше того, которым вы обычно обладаете.
Предположим затем, что при вращении вы опускаете руки. Масса ваших рук и грузов, которые они держат, теперь значительно ближе к оси вращения, и, несмотря на то что полная масса не изменилась, момент инерции очень уменьшился. Если момент инерции (I) уменьшился, то угловая скорость со должна быть соответственно увеличена, чтобы угловое количество движения (Iω) оставалось постоянным. (Другими словами, если вам нужно, чтобы произведение двух чисел всегда равнялось 24, а затем изменяете множитель с 8 на 4, то вы должны изменить второй множитель с 3 на 6, чтобы произведение продолжало равняться 24: 24 = 8∙3; 24 = 6∙4; 24 = 4∙6; 24 = 3∙8; 24 = 2∙12…)
Так и получается. Поворотный стол внезапно увеличивает скорость своего вращения, в то время как вы опускаете руки, и также скорость вращения резко уменьшается, когда вы снова поднимаете руки. Фигурист использует этот же принцип при выступлениях на льду: сначала он вращается достаточно быстро с руками раздвинутыми в стороны, а затем руки опускает вниз или вытягивает вертикально вверх и осуществляет стремительное вращение на носке конька.
Тело, которое обладает только угловым количеством движения, не может передать неуравновешенное поступательное количество движения к другому телу, поскольку передавать ему нечего. Безусловно, вращающиеся колеса автомобиля дают поступательное количество движения. Но в этом случае, однако, равное по величине, но противоположное по знаку количество движения дает земля. Эти два поступательных импульса складываются, чтобы в результате дать нуль. Любой автомобилист, который когда-либо пробовал двигаться по льду, подтвердит этот факт. Как только трение уменьшилось до величины, когда оно очень малое или никакое количество движения не может быть передано земле, автомобиль получит малое или никакое количество движения, и колеса будут прокручиваться вхолостую.
Глава 7.
РАБОТА И ЭНЕРГИЯ
Рычаг
Законы сохранения нравятся ученым. Во-первых, закон сохранения устанавливает пределы возможностей. При рассмотрении нового явления очень удобно исключить все объяснения, которые повлекли бы нарушение одного из законов сохранения (по крайней мере, пока не придут к выводу, что ничего, за исключением такого нарушения, не может объяснить явление). С оставшимися возможностями тогда гораздо легче работать.
В дополнение ко всему имеется интуитивное чувство, что ничто не возникает из ничего. Поэтому кажется надлежащим и правильным предположить, что Вселенная обладает определенным ограниченным количеством тех или других свойств материи (типа количества движения) и что в то время, как это количество распределено различными способами среди различных тел Вселенной, общая сумма их не может быть ни увеличена, ни уменьшена.
Следовательно, если мы наблюдаем ситуацию, в которой кажется, что в некотором отношении что-то получено из ничего, сразу имеет смысл начать поиск некоторого фактора ситуации, который уменьшается, компенсируя это увеличение. Может оказаться, что это — два фактора, объединенные некоторым способом, которые образуют константу. В случае углового количества движения, например, момент инерции может изменяться по желанию и может, по-видимому, появляться из ниоткуда или исчезать в никуда.
Угловая скорость, однако, всегда сразу изменяется в противоположную сторону, а произведение момента инерции и угловой скорости является константой.
Другой случай такого плана — результат рассмотрения «рычага». Рычаг — это любой твердый объект, способный к вращению вокруг некоторой фиксированной точки, называемой «точкой опоры» рычага. В качестве практического примера можно рассмотреть деревянную доску, лежащую на «козлах»; доска является рычагом, «козлы» — точкой опоры.