Выбрать главу

Термин «энергия» постепенно приобрел популярность и теперь применяется к любому явлению, способному к преобразованию в работу. Человечеству известно огромное множество таких явлений, а следовательно, множество форм энергии.

Первой формой энергии является непосредственно само движение. Работа включает в себя движение (так как объект должен быть перемещен на какое-то расстояние), так что неудивительно, что движение способно делать работу. Двигающийся воздух, то есть ветер, приводит в движение судно, а не «стоячий» воздух; поток воды поворачивает жернов, а не неподвижная вода. Значит, не воздух или вода содержат энергию, а движение воздуха или воды. Фактически все, что перемещается, содержит энергию, поскольку если перемещающийся объект независимо от того, что он собой представляет, столкнется с другим объектом, то он сможет передать свое количество движения этому второму объекту и привести его массу в движение — таким образом выполняется работа, поскольку масса будет перемещаться на некое расстояние под воздействием силы.

Энергия, связанная с движением, называется «кинетической энергией», этот термин предложил английский физик лорд Уильям Кельвин (1824– 1907) в 1856 году. Слово «кинетический» происходит от греческого слова, означающего «движение».

Так сколько же точно содержится кинетической энергии в теле, перемещающемся с некоторой скоростью, равной v? Чтобы определить это, давайте предположим, что в конце концов мы собираемся обнаружить существование закона сохранения для работы во всех ее формах. В этом случае было бы разумным утверждать, что, если мы выясним, сколько работы требуется, чтобы переместить тело с некоторой скоростью, равной v, тогда это автоматически будет означать количество работы, которую можно выполнить по отношению к некоторому другому объекту благодаря его движению с этой скоростью. Короче говоря, это будет его кинетическая энергия.

Чтобы заставить тело двигаться, во-первых, требуется приложить силу, а эта сила, в соответствии со вторым законом Ньютона, равна массе перемещающегося тела, умноженной на его ускорение: f = та. Тело будет перемещаться на некоторое расстояние, равное d, прежде чем ускорение разгонит его до скорости v, с которой мы и начали разговор. Работа, приложенная к телу, которая требуется, чтобы заставить его двигаться с этой скоростью, равна произведению силы на расстояние.

Если мы выразим силу как ma, то мы получим:

w = mad. (Уравнение 7.2)

Значительно раньше, в этой книге, когда мы обсуждали эксперименты Галилео с падающими телами, мы показали, что v = at, то есть скорость, другими словами, является произведением ускорения на время. Это выражение можно легко преобразовать в t = v/a. Также при обсуждении экспериментов Галилео мы заметили, что там, где имеется однородное ускорение,

d = ½at2,

где d — расстояние, покрытое перемещающимся телом. Если вместо t в указанном выше отношении мы подставим v/a, то получим:

d = ½∙a(v/a)2 = ½∙v2/a. (Уравнение 7.3)

Давайте теперь подставим это значение для d в уравнение 7.2, которое тогда примет форму:

w = ½∙mav2/a = ½∙mv2. (Уравнение 7.4)

Это — работа, которую следует приложить к телу массой m, чтобы заставить его двигаться со скоростью v. И поэтому это — кинетическая энергия, которую содержит тело такой массы, двигающееся с такой скоростью. Если мы обозначим кинетическую энергию как ek, то можем написать:

ek = ½∙mv2. (Уравнение 7.5)

Как я уже сказал ранее, единицы измерения работы включают в себя единицы измерения массы, умноженные на квадрат единиц измерения скорости, и, как видно из уравнения 7.5, кинетическая энергия — тоже. Поэтому кинетическая энергия, как и работа, может быть измерена в джоулях или эргах. И действительно, все формы существования энергии могут быть измерены в этих единицах.