Выбрать главу

Эта точка зрения была тщательно проверена в 1840-х годах английским пивоваром по имени Джеймс Прескотт Джоуль (1818–1889), чьим хобби было изучение физики. Он измерил теплоту, произведенную электрическим током, трением воды об стекло, образованную кинетической энергией вращения лопастей привода водяного колеса в воде, работой, которая потребовалась для сжатия газа, и так далее. При этом он нашел, что некоторое определенное количество одного вида энергии конвертируется в определенное количество другого вида энергии и что если рассматривать энергию во всем множестве ее проявлений, то никакая энергия не создается или теряется. Именно в его честь единицу измерения работы и энергии в системе МКС назвали «джоулем».

В более ограниченном смысле можно сказать, что Джоуль доказал, что некоторое определенное количество работы всегда производит некоторое количество теплоты. Применяемая обычно в Британии единица работы «фут на фунт» равна работе, которая требуется, чтобы поднять один фунт массы на высоту в один фут, преодолевая силу тяжести. Общепринятая британская единица теплоты называется «британская тепловая единица» (обычно сокращаемая до «Btu») и является тем количеством теплоты, которое требуется, чтобы поднять температуру одного фунта воды на 1° Фаренгейта. Джоуль и его преемники решили, что 778 фут-фунтов эквивалентны 1 Btu, и именно это и называется «механическим эквивалентом теплоты».

Гораздо предпочтительнее выражать этот механический эквивалент теплоты в метрической системе единиц измерения. Фут-фунт равен 1,356 джоуля, то есть 778 фут-фунтов равны 1055 джоулям. Кроме того, наиболее распространенная единица количества теплоты в физике — это «калория», которая равна количеству теплоты, которое требуется, чтобы поднять температуру одного грамма воды на Г Цельсия (т. е. по стоградусной шкале)[28]; 1 Btu равен 252 калориям (кал). Поэтому механический эквивалент теплоты Джоуля может быть выражен таким образом: поскольку 1055 джоулей равняются 252 калориям, то 4,18 джоуля = 1 калории.

Как только стало ясным перечисленное выше, дальнейшим естественным ходом было предположить, что закон сохранения механической энергии должен быть преобразован в закон сохранения энергии, то есть включить в себя самый широкий смысл того, что мы понимаем под понятиями «энергия», «работа», «механическая энергия», «теплота» и всеми остальными, которые могли бы быть конвертированы в теплоту. Джоуль видел это, и даже до того, как его эксперименты получили дальнейшее развитие, немецкий физик Юлиус Роберт фон Майер (1814–1878) экспериментально подтвердил истинность таких предположений. Однако впервые закон сохранения энергии был заявлен научному сообществу в форме достаточно ясной и недвусмысленной в 1847 году немецким физиком и биологом Германом фон Гельмгольцем (1821–1894), и поэтому именно он считается первооткрывателем закона.

Закон сохранения энергии, вероятно, является наиболее фундаментальным из всех обобщений, сделанных учеными-физиками, и таким, от которого им меньше всего хотелось бы отказываться. Мы рады сообщить, что пока что этот закон держится, несмотря на все отклонения реальной Вселенной от идеальных моделей, основанных учеными; он справедлив для всех систем — живых и неживых — и действует как для крошечного мира субатомного царства, так и для космического мира галактик. По крайней мере дважды в прошлом (XX) столетии были обнаружены явления, которые, казалось, нарушали закон сохранения энергии, но физики оба раза оказались в состоянии спасти закон, расширяя интерпретацию понятия «энергия». В 1905 году Альберт Эйнштейн доказал, что сама масса является формой энергии, а в 1931 году австрийский физик Вольфганг Паули (1900–1958) выдвинул концепцию нового вида субатомной частицы — «нейтрино», существование которой смогло объяснить очевидные отклонения от закона сохранения энергии.

И все это не было просто вопросом «спасения лица» или внесения исправлений в закон, который начал «разваливаться» и «плыть». Каждое расширение концепции «сохранения энергии» аккуратно вписалось в расширяющуюся структуру науки XX века и помогло объяснить происхождение явлений; оно также помогло предсказать (и абсолютно точно) другие явления, которые нельзя было бы объяснить или предсказать иначе. Ядерная бомба, например, явление, которое можно объяснить только в соответствии с эйнштейновской концепцией о том, что масса является формой энергии.

Глава 8.

ВИБРАЦИЯ

вернуться

28

Более подробно о градусах Фаренгейта, градусах Цельсия, калориях и других подобных единицах мы поговорим позже — в 13-й и 14-й главах этой книги.