Например, Weinberg, который внес большой вклад в QFT, пишет что QFT должна рассматриваться "in the way it is," но в то же время она является "low energy approximation to a deeper theory that may not even be a field theory, but something different like a string theory". Т. е. он признает, что проблемы существуют и думает, что они будет решены в какой-то теории обобщающей QFT, но которая опять-таки будет основана на стандартной непрерывной математике.
Таким образом, получается странная ситуация: все, вроде бы, согласны, что природа дискретна и об этом говорит даже термин "квантовая теория". Но все проблемы теории пытаются решить при помощи непрерывной математики. Т.е., все получается как в анекдоте, который рассказал мне мой друг Толя Штилькинд: "Группа обезьян получила задание достичь Луну. После этого все обезьяны начали карабкаться на деревья. Та обезьяна, которая залезла выше всех, думает, что у нее самый большой прогресс, и она ближе к цели чем остальные обезьяны". Этот анекдот я привел даже в своей монографии [7]. Этот анекдот также содержит мораль, что, чтобы достичь Луну, надо вначале слезть с деревьев. Эту мораль я не привел, считая ее очевидной.
Из сказанного ясно, что у физиков необходимость в конечной математике может возникнуть только в двух случаях: а) они убедятся, что при помощи только стандартной математики проблемы решить нельзя (т.е., пока гром не грянет, мужик не перекрестится); 2) при помощи конечной математики будут получены важные физические результаты, которые не могут быть получены в непрерывной математике.
Как и большинство физиков, я не знал самых основ конечной математики. Чисто случайно, когда мне было около 40, наткнулся на книгу (уже не помню какую), которая показалась мне интересной. Из нее узнал про поля Галуа и удивился, что физики их не знают, хотя их можно преподавать уже в первом или втором классе (например, после того как прошли деление).
Простой пример поля Галуа – множество F5 из пяти элементов (0, 1, 2, 3, 4), в котором действия определяются так. Сложение определяется как обычно, но по модулю 5. Например, 1+1=2, 2+2=4 как обычно, но 2+3=0 или 4+4=3. Если a – элемент множества F5, то противоположный элемент b=-a определяется так, что в a+b=0 в F5. Например, – 1=4, – 2=3 и т. д. Так что мы имеем сложение и вычитание. Произведение определяется как обычно, но по модулю 5. Например, 2·2=4, но 2·4=3. Наконец, противоположный элемент
b=1/a определяется так, что a·b=1 в F5. Например, 1/2=3, 1/4=4 и т.д.
Более общий пример поля Галуа – множество Fp из p элементов (0,1,2,… p-1), где действия определяются по модулю p. Тогда, если p – простое, то в Fp возможны все 4 арифметических действия.
Читатель может сказать, что пример с F5 не имеет никакого отношения к реальной жизни, где, например 3+2=5, а не 3+2=0. Но допустим, что физика в нашем мире определяется математикой с полем Галуа Fp, где p – очень большое. Т.к. операции в Fp определяются по модулю p, то мы можем обозначать элементы из Fp не только как (0,1,2,…p-1), но и, например, как (-(p-1)/2,-(p-3)/2,… —1,0,1,…(p-3)/2,(p-1)/2). Этот набор называется набором минимальных вычетов. Тогда все будет как обычно до тех пор пока будем складывать, вычитать и умножать числа, которые по модулю намного меньше p, т.е., при этом существование p не будет чувствоваться, а отличие от обычной математики будет чувствоваться только когда мы имеем дело с числами не намного меньшими чем p.
Но читатель может сказать, что пример с Fp тоже нереалистический т.к. здесь деление совсем не такое как обычно. Например, 1/2 в Fp – это очень большое число (p+1)/2, что, казалось бы, противоречит здравому смыслу. На это возражение можно ответить следующим образом. Во-первых, как я отмечаю в своих работах, противоречия нет т.к. в квантовой теории пространства состояний проективные. А во-вторых, как отмечено выше, стандартное деление тоже проблематично и поэтому возникает вопрос, будет ли будущая квантовая теория основана не на конечном поле, а на конечном кольце, где есть только три действия – сложение, вычитание и умножение.
Вторая возможность представляется очень привлекательной даже из эстетических соображений. История физики говорит, что желательно вводить наименьшее возможное число понятий и не вводить понятия, которые не имеют фундаментального смысла. В своих первых работах я исходил из того, что конечная квантовая теория должна быть основана на конечном поле, но Metod Saniga написал мне, что случай кольца еще более интересный.