Выбрать главу

В разделе 9.5 я отмечал, что стандартная математика имеет проблемы с обоснованием и, несмотря на попытки многих знаменитых людей, эти проблемы не решены. Теоремы Гёделя о неполноте тоже говорят о том, что стандартная математика несамосогласованна. Но если посмотреть на стандартную математику с точки зрения, что она является частным случаем конечной, то проблем нет. С этой точки зрения стандартная математика может рассматриваться только как аппарат, который во многих случаях (но не всех) дает хорошее приближенное описание, поэтому нет нужды такую математику обосновывать т.к. в конечной математике проблем с обоснованием нет.

Подход основанный на конечной математике является более естественным и с точки зрения, что здесь любые утверждения проверяемы, по крайней мере в принципе. Более того, здесь работает принцип, что любое утверждение является правильным или нет, если есть способ это проверить.

Например, мы хотим проверить, утверждение 10+20=30 правильное или нет. Например, хотим проверить это на компьютере или счетах. Любое счетное устройство может вычислять только по модулю какого-то числа p, которое зависит от объема памяти этого устройства. Например, если p=40, то мы действительно получим, что 10+20=30, но если p=25, то мы получим, что 10+20=5. Отсюда ясно, что любые математические операции (даже 2·2=4) проверяемы только если они по модулю какого-то числа. Стандартная математика – идеализируемый частный случай конечной, в формальном пределе, когда p→∞.

Хотя стандартная математика – часть нашей повседневной жизни, но большинство людей не осознает, что в ней есть неявное предположение, что ресурсы неограниченны. И в стандартной математике нет принципа, что для любого утверждения его правильность может быть проверена. Например, нельзя проверить, что a+b=b+a для любых натуральных чисел a и b.

То, что любое утверждение должно быть проверяемо – часть Венской школы позитивистской философии, в которой неформальным руководителем был Moritz Schlick. С другой стороны, в философии, которую развивал Karl Popper есть “The Falsification Principle”, и, как говорил Popper, “science is more concerned with falsification of hypothesis than with the verification.” Здесь утверждение, что всегда a+b=b+a считается условно верным до тех пор, пока не найдены такие числа a и b, что a+bb+a. Ясно, что квантовая теория ближе по духу к Венской школе, а классическая – к философии Popper. Поэтому неудивительно, что в споре Эйнштейна и Бора о квантовой теории Popper был полностью на стороне Эйнштейна.

У некоторых моих читателей возникло впечатление, что конечная математика отменяет, например, π, e, уравнения Максвелла, теорему Пифагора, и т. д. В связи с этим, напомню, что, как уже отмечалось, более общая теория не отменяет менее общую, но говорит, что менее общая теория является хорошим приближением только при каких-то условиях.

Есть два уровня понимания π – как учили в школе и как учили в институте. В школе – что это отношение длины окружности к диаметру. А что такое окружность – это множество точек находящихся на расстоянии R от центра. А что такое точка – некое умозрительное понятие, в природе точек нет и непрерывных кривых тоже нет. Если мы, например, нарисуем на бумаге, якобы, непрерывную кривую и посмотрим на нее в микроскоп, то увидим, что на самом деле кривая сильно разрывна т.к. состоит из атомов, точек на ней нет и т.д. Поэтому понятия диаметра окружности и ее длины – чисто умозрительные. А почему тогда уравнения Максвелла, теорема Пифагора, дивергенция, дифуры и т.д. хорошо работают? Или например, когда мы описываем воду в океане уравнениями гидродинамики, то это хорошо работает. Потому что в приближении когда пренебрегаем размерами атомов и представляем вещество как нечто непрерывное, то в этом приближении есть бесконечно малые, можно дифференцировать и т.д.

Теперь о том как учили в институте. Все понятия типа π, и е не должны исходить из наших геометрических представлений, а только из матанализа. Здесь ВСЕ функции которые мы учили ОПРЕДЕЛЯЮТСЯ их разложением в ряд Тэйлора. Например, exp(x) определяется своим рядом Тэйлора, cos(x), sin(x) – своими рядами Тэйлора и т. д., а е определяется бесконечным рядом Тэйлора для exp(1). Отсюда сразу следует, что exp(ix) = cos(x) + isin(x). А если мы возьмем ряд Тэйлора для arccos(x) или arcsin(x), то π =arccos(-1) или π =2arcsin(1), т. е., π определяется своим бесконечным рядом. Формула exp(2iπ)=cos(2π)+isin(2π)=1 получается только из манипуляций с бесконечными рядами Тэйлора. Поэтому если думать, что в ПРИНЦИПЕ можно посчитать сколько угодно знаков для π и е, то можно считать эти знаки до посинения. А если мы все же согласимся с тем, что, например, число атомов во вселенной конечно и нельзя построить компьютер с бесконечным числом бит, то придется признать, что π и e не такие фундаментальные как думают. Квантовая теория полностью изменила наше мировосприятие. В ней нельзя сказать, что какая-то величина "на самом деле" существует, но никак не может проявиться – если она не может проявиться – то значит она не существует.