По двум причинам. Во-первых, они спроектированы так, что приложенные к ним напряжения всегда меньше тех, которые нужны для подрастания самой «агрессивной» трещины. А во-вторых, и мы об этом уже говорили, металлы имеют определенный иммунитет против трещин. Он создается «прививкой», в роли которой выступает пластическая деформация. Она отодвигает закритичес-кий процесс и содействует локализации разрушения вблизи его наиболее острых в вершинах трещин и дефектов. Процессы деформирования, как человек, сглаживающий возможные конфликты, обволакивающий их деликатностью и мягкостью, понижают поле упругих напряжений в вершине трещины и, не давая ей расти, растрачивают накопленную энергию на движение дислокаций. Плохо, если металл хрупок по своей природе. Обладай он даже высокой прочностью, это не спасет его от разрушения, появись в нем какой-то концентратор напряжений или микроскопическая трещина. Ведь теперь нет амортизатора – пластичности, а напряжения в остром концентраторе настолько велика, что без труда превзойдет изначальные прочностные свойства металла.
Вот поэтому-то и говорят, что чувствительность к надрезам высокопрочных сталей всегда выше, чем у низкопрочных.
Долго ли может жить металл с докритической системой трещин? Быть может вечно? Это было бы слишком хорошо, чтобы быть правдой!
Природа позаботилась и здесь о том, чтобы противопоставить плюсы минусам. Один из таких минусов заключается в следующем. Пусть нагрузка на деталь мала
и несоизмеримо ниже, нежели любые пределы прочности. По всем законам механики трещины не должны были бы расти в этих условиях. Но советский физик С. Н. Журков показал, что даже в этом случае разрушение неизбежно. Вопрос лишь в том, когда оно произойдет. Чем больше приложенная нагрузка, тем неотвратимее конец и тем раньше он наступит. Эту закономерность так и называют временной зависимостью прочности.
С какими же физическими процессами связано убывание прочности со временем? Видимо, их много. Здесь и дислокационные явления, если речь идет о кристаллических материалах. Здесь и подрастание трещин за счет вакансий и дислоцированных атомов. Здесь, как считают некоторые физики, происходит и прямой разрыв атомных связей. И уж, безусловно, протекает разрушение за счет медленного докритического объединения трещин. Однако в целом это явление исключительно сложное и до конца пока что не изученное. Главное, однако, заключается в том, что даже при относительно низких нагрузках беспредельно долго прочным материал быть не может.
Что же делать? Прежде всего стремиться к тому, чтобы количество микротрещин в металлах было минимальным. Также важно, чтобы, уж коль они существуют, размеры их были возможно меньшими. Совершенно необходимо предусмотреть какой-то буферный механизм притормаживания трещин. Простейшим является, конечно же, пластическая деформация. Поэтому желательно, чтобы металл всегда был максимально вязким, без потери в прочности. При выполнении этих условий даже со многими микротрещинами, металл может долго, очень долго служить людям и быть воплощением надежности и прочности.
КОЛОРАТУРНОЕ СОПРАНО
Но будто бы Трещат при расщепленьи Мельчайшие Частицы Естества!
Когда-то французский поэт Жан Дипрео писал:
Прав ли он был? Действительно ли трещина ползет так уж и неслышно? Опыт говорит о том, что трещину к молчальникам отнести нельзя. На каждом этапе своего существования – от зарождения до стремительного закритического роста – она непрерывно заявляет о себе вслух. При этом она «вещает» едва ли не во всех диапазонах- от неслышимого инфразвука через весь слышимый нами спектр до ультразвука, также не воспринимаемого нашим слуховым аппаратом.
С чем же связана «говорливость» трещины? Прежде всего дело не только в ней. Любое тело, в котором под воздействием внешней нагрузки распространяются упругие волны, способно совершать колебания. А поскольку каждому телу свойственна собственная частота колебаний, так называемая резонансная, то при нагружении, особенно динамическом, еще задолго до разрушения происходит излучение волн в окружающее пространство. Ударьте по пустому ведру или бочке! Щелкните ногтем по тонкому стакану и вы услышите его звучание. Вспомните, как проверяют хрустальную вазу при покупке. По ней слегка стучат карандашом или ложечкой. Если она цела, звук чистый, звонкий, а если в ней есть трещина, возникает дребезжание. Вот как рассказывает о звучании хрусталя писатель Г. Семенов: «…он любил показывать домочадцам свое искусство: жестким пальцем, смоченным в вине или, если вина не было, в уксусе, вел по краешку вазочки, как по струне, и в какой-то момент в воздухе рождался вдруг тонкий и грустный, серебряный голос баккары, который властно витал по комнате и тихо замирал, вызывая на лице у Демьяна Николаевича торжествующую улыбку. Звуки были чище и гуще, чем звуки виолончели или скрипки, и чудилось всегда будто не хрусталь звучал, не он издавал протяжный ветренный гул или звон, а сам воздух наливался звучным пением… Видя новую вазочку, он говорил возбужденно: – «Ты знаешь, она поет, как снегирь… Какой звон!…»1
Описанное Г. Семеновым звучание создается трением пальца о кромку вазы, возбуждающим так называемые автоколебания хрусталя. Грубо говоря, палец «тянет» участок поверхности до тех пор, пока силы упругости материала не превысят силы трения между хрусталем
1 Семенов Г. Уличные фонари//Наш современник. 1975. № 5. С. 4 и 29.
и пальцем. Тогда контакт разрывается и освобожденный материал вазы быстро движется, возвращаясь на место. Множество таких процессов и создает звучание. При механическом нагружении детали или конструкции в них возбуждаются и такие, и многие другие виды упругих колебаний. Потому уже на самых начальных стадиях чисто упругого деформирования металл звучит. Слабо, но звучит!
Но вот кончилась упругая стадия и началась пластическая деформация. Еще с древних времен известен «крик» олова, раздающийся каждый раз, когда этот металл деформируют. «Шумят» при деформировании все металлы, но слабее. Например, низкоуглеродистая сталь испускает звуковые волны при растяжении в широком интервале температур от +200 до -196 °С. Звук, издаваемый нержавеющей и другими сталями, зависит от степени деформирования. Особенно интенсивно звучание при начальных стадиях формоизменения. Из поликристаллического цинка деформация «исторгает» не только звуковые частоты, но и неслышимые ультразвуки частотой до одного миллиона колебаний в секунду (герц). При увеличении скорости деформирования интенсивность звучания всех металлов растет.
Практически любой процесс деформации – и растяжение, и усталость, и ползучесть-провоцирует звучание металла, однако это всегда процесс слабый, поэтому для регистрации возникающих волн нужны специальные чувствительные приборы. Большинство материалов «звучит» только при деформировании. Но некоторые «не умолкают» и после прекращения действия нагрузки. С чем же связана эта звуковая активность? Ведь, казалось бы, ничего не происходит, а металл «возмущается».
Отсутствие внешних проявлений сложности процесса деформирования металлов не означает, что он прост. В основе акустического излучения металлов лежит элементарное движение дефектов – дислокаций, двойников и других.
Взрыв высокочастотных колебаний в виде огромного числа импульсов длительностью одна-три миллиардные доли секунды (наносекунды) происходит во всех изученных монокристаллах на самых ранних стадиях пластической деформации. Связана эта волновая эмиссия со скольжением дислокаций, происходящим с до-
вольно высокой скоростью – 20 м/с. Чувствительность наших приборов такова, что можно уловить излучение отдельной дислокации или малого их числа. Но для этого нужно, чтобы длина участка дислокации была не меньше 8 мкм.
Существует несколько вариантов испускания дислокацией акустических сигналов. Линия дислокации, распространяющаяся в кристалле, может застревать в нем, зацепившись за какие-нибудь барьеры, но по мере роста нагружении дислокация отрывается от них. Тогда примерно 1 млн. сегментов, закрепленных между «гвоздями в кристаллической решетке», отрывается одновременно и создает акустический сигнал длительностью в 10- 30 мкс. Харьковчанин В. Д. Нацик показал, что звук может издавать и дислокация, прорывающаяся через разнообразные границы в кристалле. Дело в том, что, переходя через барьер, дислокация вынуждена перестраивать свое упругое поле. В результате части этого поля как бы отрываются от дислокации и распространяются в кристалле в виде звукового сигнала. Оказалось, что «изрядно шумит» и дислокация, выходящая на поверхность кристалла. Здесь две причины. Во-первых, при этом дислокация исчезает и энергия ее упругого поля, оставаясь «бесхозной», преобразуется в звук. А во-вторых, выход дислокации на поверхность и высвобождение энергии, вызванное ее гибелью, возбуждает колебания атомов на самой поверхности.