Выбрать главу

Начнем с того, что трещины далеко не всегда значительны по размерам. Если бы они были слишком велики, детали как единого целого уже не существовало бы. Сплошь и рядом трещины в полном смысле слова микроскопичны, то есть видеть их можно в микроскоп. Да и то не во всякий. Иной раз нужен не оптический, а электронный. Это значит, что размеры таких трещин исчисляются тысячными, а порой, миллионными долями сантиметра.

' Куприн А. И. Собр. соч в девяти томах. Т. 5. – М.: Правда. С. 40.

Да и червя такого не сыскать, чтобы запустить его в трещину сечением в несколько межатомных расстояний. Но если вдруг мы и нашли бы какое-то живое существо, способное «втиснуться» в дефект, то оно оказалось бы либо в тупике – трещины конечны по своей длине, либо в безнадежном лабиринте. К тому же, далеко не все трещины выходят на поверхность…

Между тем реальный металл – это мир, пронизанный фантастическим количеством микротрещин. Я имею в виду полноценный металл, то есть хорошо выплавленный, прокатанный, термически обработанный с соблюдением всех правил и предосторожностей. Чем-то он напоминает старый потрескавшийся потолок. Трещины на нем образуют сложнейшие рисунки: вглядитесь в них пристально и воображение приблизит их к любому образу: вы увидите паутинное разветвление железнодорожного узла, фантастических зверей, удивительные лица. Не испугаться ли за прочность металла?

Но мы уже знаем – до поры до времени это не страшно. Трещины-то докритические. Тем не менее под контролем их держать надо. Как же это можно сделать? На прозрачных материалах самые малые трещины, которые видны в микроскоп, порядка нескольких тысячных миллиметра. А если меньше? Тогда можно использовать рассеяние света на неоднородностях, которыми являются микротрещины. Представьте себе, что Вы на хоккейном матче. За пять минут до его начала стадион оживлен, все осветительные устройства включены, но почему-то довольно темно. А дело в том, что световые лучи входят под углом в идеальный, полированный слой льда и начинают отражаться в нем от одной поверхности к другой. Очень много света буквально «запутывается в слое льда» и «выходит из игры» – теряется для освещения. Но вот прошло 5-10 минут. Накал ламп не изменился и новых прожекторов не включали, а явственно посветлело. Что же произошло? Хоккеисты своими коньками изрезали поверхность льда. Возникшие от коньков борозды и отходящие от них внутрь льда трещинки не пропускают свет в глубь слоя льда и рассеивают его в пространство. Вот так же примерно рассеивают свет и микроскопические трещины внутри прозрачного кристалла. Благодаря этому можно изучать трещинки, размер которых близок к длине волны света, то есть равен примерно пяти деся-тимиллнонным частям метра. А нельзя ли с помощью

рассеяния света исследовать зарождение самых первых, самых маленьких трещин длиной в одно межатомное расстояние? Нет, нельзя! Это означало бы повторение «научной ошибки» прекрасной поэтессы Марины Цветаевой, которая писала:

Гамлетом – перетянутым – натуго,

В нимбе разуверенья и знания, Бледный – до последнего атома…

Может ли атом нашего тела иметь цвет? По двум причинам – нет. Во-первых, потому, что мы видим свет, отраженный и рассеянный нами, а не излучаемый телом. А во-вторых, размеры атома в 5000 раз меньше длины волны света. И если бы бегущая световая волна встретила на своем пути одинокий атом или… микротрещину, равную примерно его размерам, она попросту обогнула бы его или, как говорят, дифрагировала бы на нем. Иначе говоря, по существу не заметила бы, подобно тому как большая волна «не замечает» тонкий пруток, воткнутый в дно.

Но что же надо сделать, чтобы увидеть настоящие зародышевые микротрещины, да еще в непрозрачном материале? Нужно тоже использовать рассеяние, но таких электромагнитных волн, размеры которых были бы близки к межатомному расстоянию. «Да ведь это рентгеновские лучи» – скажет догадливый читатель. И будет прав. Да, рассеяние рентгеновских лучей позволяет изучать распределение самых маленьких «атомных» трещин в металлах.

У рассеяния рентгеновских лучей есть и незаурядный конкурент – рассеяние электронов. В последние, годы электронные микроскопы настолько усовершенствовали, что они способны буквально следить за поведением отдельного атома. Неудивительна поэтому перспективность такого метода для наблюдения самых ранних стадий появления микротрещин. И если у наших предшественников эталоном мастерства считалось, образно говоря, умение «подковать блоху», то в недалеком будущем может случиться так, что нужно будет «подковать» атом. Скажем, чтобы восстановить его сцепление с соседом. Тогда-то и окажется, что нет метода эффективнее и, что самое важное, нагляднее, чем электронная микроскопия.

Ну, а как быть в «земных» случаях? Когда с завода идет поток термически обработанных деталей, на которых не должно быть больших, то есть явно опасных тре-

пе

щин? Здесь наша задача проще, ведь речь идет о трещинах в доли миллиметра и более. Методов определения размеров и, как говорят, лоцирования трещин тем больше, чем большие размеры имеет трещина. Допустим, что вначале трещина довольна мала. Тогда можно применить флуоресцентный анализ. Металл, на поверхности которого возможно появление трещин, смачивают специальным раствором, обладающим двумя ценными качествами. Прежде всего он способен проникать в мельчайшие полости и заполнять их. Это качество «первопроходца» дает уверенность в том, что если трещина существует, то жидкость (которую может смоделировать, например, керосин) наверняка окажется в трещине. Второе свойство раствора – его способность светиться под действием ультрафиолетового света. Деталь смачивали, а затем, спустя некоторое время, раствор смывали с поверхности металла струей воды. Затем освещали ультрафиолетовыми лучами. При этом

Поверхность гладкого металла Была бесцветнее стекла.

(Ш. Бодлер)

Потому, что керосина на ней уже не было. Присутствие трещины «выдает» задержавшаяся в ней и светящаяся жидкость. Свет этот, правда, очень слабый потому, что в узкой трещине жидкости мало, и потому, что люминофор остается лишь в глубине трещины, как бы на дне глубокого и узкого каньона. Он излучается не во все стороны, а только в направлении, определяемом берегами трещины. Поэтому металл рассматривают в темноте. Ультрафиолетовые лучи мы не видим, а слабое свечение люминофора в трещине замечаем.

На заводах очень широко пользуются магнитным методом. Идея его проста. Допустим, что каким-то способом мы создали в металле магнитное поле. Оно стремится равномерно распределиться по сечению металла. Оно стремится равномерно распределиться по сечению металла. Но если в нем есть трещина, то ни о какой равномерности и речи быть не может. В вершине трещины магнитное поле концентрируется. А если трещина при этом замкнута, то ведет все это к образованию на краях ее у вершин самых настоящих магнитных полюсов. Теперь возьмем литр керосина и насыплем в него мельчайший порошок железа. Размешаем и выльем эту смесь на деталь. Крупинки железа, способные легко перемещаться в жидкости, осядут на деталь, сконцентрировавшись прежде всего у магнитных полюсов. И трещина будет «разоблачена».

Однако безусловным хотя и некоронованным королем дефектоскопии является ультразвук. И вот почему. Метод этот прощупывает трещины самых разных размеров – от долей сантиметров до километров. Нижний предел со временем будет уменьшен раз в сто. Ультразвук всеяден – он найдет любую трещину: и выходящую на поверхность, и прячущуюся в глубине металла. Ему не важно, капитально ли вскрылась трещина или ее берега едва разошлись. Оборудование для его осуществления очень транспортабельно. Поэтому не удивительно, что его широко применяют во всем мире. В любой отрасли промышленности он поможет отыскать дефекты – заводском цехе и в поле у бесконечной нитки нефтепровода.

На чем же он основан? Прежде всего на неспособности ультразвука проходить через воздух и вакуум. Он любит «твердую почву» и способен распространяться лишь по металлу. Поэтому, окажись на пути ультразвукового луча трещина, – дальше идти он не может. Уста-