3
От каких предпосылок классической науки удалось избавиться современной науке? Как правило, от тех, которые были сосредоточены вокруг основополагающего тезиса, согласно которому на определенном уровне мир устроен просто и подчиняется обратимым во времени фундаментальным законам. Подобная точка зрения представляется нам сегодня чрезмерным упрощением. Разделять ее означает уподобляться тем, кто видит в зданиях лишь нагромождение кирпича. Но из одних и тех же кирпичей можно построить и фабричный корпус, и дворец, и храм. Лишь рассматривая здание как единое целое, мы обретаем способность воспринимать его как продукт эпохи, культуры, общества, стиля. Существует и еще одна вполне очевидная проблема: поскольку окружающий нас мир никем не построен, перед нами возникает необходимость дать такое описание его мельчайших «кирпичиков» (т. е. микроскопической структуры мира), которое объясняло бы процесс самосборки.
Предпринятый классической наукой поиск истины сам по себе может служить великолепным примером той раздвоенности, которая отчетливо прослеживается на протяжении всей истории западноевропейской мысли. Традиционно лишь неизменный мир идей считался, если воспользоваться выражением Платона, «освещенным солнцем умопостигаемого». В том же смысле научную рациональность было принято усматривать лишь в вечных и неизменных законах. Все же временное и преходящее рассматривалось как иллюзия. Ныне подобные взгляды считаются ошибочными. Мы обнаружили, что в природе существенную роль играет далеко не иллюзорная, а вполне реальная необратимость, лежащая в основе большинства процессов самоорганизации. Обратимость и жесткий детерминизм в окружающем нас мире применимы только в простых предельных случаях. Необратимость и случайность отныне рассматриваются не как исключение, а как общее правило.
Отрицание времени и сложности занимало центральное место в культурных проблемах, возникавших в связи с научными исследованиями в их классическом определении. Понятия времени и сложности, не дававшие покоя многим поколениям естествоиспытателей и философов, имели решающее значение и для тех метаморфоз науки, о которых пойдет речь в дальнейшем. В своей замечательной книге «Природа физического мира» Артур Эддингтон[19] ввел различие между первичными и вторичными законами. Первичным законам подчиняется поведение отдельных частиц, в то время как вторичные законы применимы к совокупностям, или ансамблям, атомов или молекул. Подчеркивание роли вторичных законов означает, что описания поведения элементарных компонент недостаточно для понимания системы как целого. Ярким примером вторичного закона, по Эддингтону, может служить второе начало термодинамики — закон, который вводит в физику «стрелу времени». Вот что пишет о втором начале термодинамики Эддингтон:
«С точки зрения философии науки концепцию, связанную с энтропией, несомненно, следует отнести к одному из наиболее значительных вкладов XIX в. в научное мышление. Эта концепция ознаменовала реакцию на традиционную точку зрения, согласно которой все достойное внимания науки может быть открыто лишь путем рассечения объектов на микроскопические части»[20].
В наши дни тенденция, о которой упоминает Эддингтон, необычайно усилилась. Нужно сказать, что некоторые из наиболее крупных открытий современной науки (такие, как открытие молекул, атомов или элементарных частиц) действительно были совершены на микроскопическом уровне. Например, выделение специфических молекул, играющих важную роль в механизме жизни, по праву считается выдающимся достижением молекулярной биологии. Достигнутый ею успех был столь впечатляющим, что для многих ученых цель проводимых ими исследований стала отождествляться, по выражению Эддингтона, с «рассечением объектов на микроскопические части». Что же касается второго начала термодинамики, то оно впервые заставило усомниться в правильности традиционной концепции природы, объяснявшей сложное путем сведения его к простоте некоего скрытого мира. В наши дни основной акцент научных исследований переместился с субстанции на отношение, связь, время.
19
Eddington A. The Nature of the Physical World.—Ann Arbor: University of Michigan Press, 1958, p. 68—80.